His70 of Acetivibrio alkalicellulosi Cel5A is important for efficient hydrolysis of short cellodextrins.

IF 3.5 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY AMB Express Pub Date : 2025-03-20 DOI:10.1186/s13568-025-01858-w
Mengxiang Jia, Yangyang Chen, Jingting Wang, Jiahan Wang, Yihua Ma, Yujiao Wang, Qian Ma, Yiheng Zhang, Weidong Liu, Kuanqing Liu
{"title":"His<sup>70</sup> of Acetivibrio alkalicellulosi Cel5A is important for efficient hydrolysis of short cellodextrins.","authors":"Mengxiang Jia, Yangyang Chen, Jingting Wang, Jiahan Wang, Yihua Ma, Yujiao Wang, Qian Ma, Yiheng Zhang, Weidong Liu, Kuanqing Liu","doi":"10.1186/s13568-025-01858-w","DOIUrl":null,"url":null,"abstract":"<p><p>Cellulose, a linear glucan linked by β-1,4 glycosidic bonds, is the most abundant renewable polysaccharide on earth. Complete enzymatic hydrolysis of cellulose liberates the readily metabolizable glucose that could be further converted to valuable biocommodities, and essential to this process are cellulases that hydrolyze the β-1,4 glycosidic bonds. Cellulases are among the most intensively studied and best understood enzymes, and many key residues have been uncovered and interrogated with respect to their functions in catalysis and/or substrate binding. However, it remains to be explored whether additional residues, especially in many poorly characterized cellulases such as processive endoglucanases, might also be functionally important. Here, we investigated a processive endoglucanase from an alkaliphilic bacterium Acetivibrio alkalicellulosi AaCel5A that consists of a glycohydrolase family 5 (GH5) domain and two tandem carbohydrate-binding module family 6 (CBM6) domains. Via structure-guided engineering, we uncovered the functional importance of a previously underexplored but relatively conserved histidine (histidine70 or His<sup>70</sup>). His<sup>70</sup> itself appears to be largely dispensable for hydrolyzing β-1,4 glycosidic bonds, but it is important for efficient hydrolysis of short cellodextrins such as cellotriose, cellotetraose, and cellopentaose, likely through its ability to coordinate substrate binding. Our work thus provides important mechanistic insights into how processive endoglucanases may act on short cellodextrins.</p>","PeriodicalId":7537,"journal":{"name":"AMB Express","volume":"15 1","pages":"53"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMB Express","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13568-025-01858-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cellulose, a linear glucan linked by β-1,4 glycosidic bonds, is the most abundant renewable polysaccharide on earth. Complete enzymatic hydrolysis of cellulose liberates the readily metabolizable glucose that could be further converted to valuable biocommodities, and essential to this process are cellulases that hydrolyze the β-1,4 glycosidic bonds. Cellulases are among the most intensively studied and best understood enzymes, and many key residues have been uncovered and interrogated with respect to their functions in catalysis and/or substrate binding. However, it remains to be explored whether additional residues, especially in many poorly characterized cellulases such as processive endoglucanases, might also be functionally important. Here, we investigated a processive endoglucanase from an alkaliphilic bacterium Acetivibrio alkalicellulosi AaCel5A that consists of a glycohydrolase family 5 (GH5) domain and two tandem carbohydrate-binding module family 6 (CBM6) domains. Via structure-guided engineering, we uncovered the functional importance of a previously underexplored but relatively conserved histidine (histidine70 or His70). His70 itself appears to be largely dispensable for hydrolyzing β-1,4 glycosidic bonds, but it is important for efficient hydrolysis of short cellodextrins such as cellotriose, cellotetraose, and cellopentaose, likely through its ability to coordinate substrate binding. Our work thus provides important mechanistic insights into how processive endoglucanases may act on short cellodextrins.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
AMB Express
AMB Express BIOTECHNOLOGY & APPLIED MICROBIOLOGY-
CiteScore
7.20
自引率
2.70%
发文量
141
审稿时长
13 weeks
期刊介绍: AMB Express is a high quality journal that brings together research in the area of Applied and Industrial Microbiology with a particular interest in ''White Biotechnology'' and ''Red Biotechnology''. The emphasis is on processes employing microorganisms, eukaryotic cell cultures or enzymes for the biosynthesis, transformation and degradation of compounds. This includes fine and bulk chemicals, polymeric compounds and enzymes or other proteins. Downstream processes are also considered. Integrated processes combining biochemical and chemical processes are also published.
期刊最新文献
His70 of Acetivibrio alkalicellulosi Cel5A is important for efficient hydrolysis of short cellodextrins. Sulfo-phospho-vanillin method for screening Aurantiochytrium strains with high docosahexaenoic acid levels. Extraction of grape seeds by different solvents affects the activities of the resultant extract. Biosynthesis and metabolic engineering of natural sweeteners. Correction to: Quantitative real-time PCR analysis of gut microbiota in rheumatoid arthritis patients compared to healthy controls.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1