Integrative RNA-seq and ATAC-seq analysis unveils antioxidant defense mechanisms in salt-tolerant rice variety Pokkali.

IF 4.3 2区 生物学 Q1 PLANT SCIENCES BMC Plant Biology Pub Date : 2025-03-20 DOI:10.1186/s12870-025-06387-z
Qiaoyu Yang, Yutong Zheng, Xitao Li
{"title":"Integrative RNA-seq and ATAC-seq analysis unveils antioxidant defense mechanisms in salt-tolerant rice variety Pokkali.","authors":"Qiaoyu Yang, Yutong Zheng, Xitao Li","doi":"10.1186/s12870-025-06387-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Salt stress is one of the most significant environmental challenges, severely impacting rice growth and yield. While different rice varieties exhibit varying levels of tolerance to salinity, Pokkali, a traditional salt-tolerant variety, stands out for its ability to thrive in saline conditions. Understanding the molecular and physiological mechanisms that underpin this tolerance is essential for breeding and developing rice varieties with enhanced resilience to salt stress.</p><p><strong>Methods: </strong>In this study, we selected the salt-tolerant rice variety Pokkali and the salt-sensitive variety IR29 for a controlled saline stress experiment. Plants were subjected to a 150 mM NaCl treatment for 7 days, after which leaf samples were collected from both varieties. Antioxidant physiological parameters were measured, and RNA-seq and ATAC-seq analyses were conducted to explore gene expression and chromatin accessibility. Key genes identified through sequencing were validated using RT-qPCR.</p><p><strong>Results: </strong>Under salt stress, Pokkali demonstrated strong tolerance and a higher antioxidant capacity compared to IR29, as evidenced by increased survival rates and fresh weight. Pokkali also showed elevated activity of antioxidant enzymes such as superoxide dismutase, peroxidase, and catalase, along with reduced accumulation of hydrogen peroxide. Transcriptomic and ATAC-seq analyses revealed that Pokkali's upregulated genes were significantly enriched in pathways related to redox homeostasis. These genes were also involved in metabolic processes such as glycan biosynthesis, amino acid metabolism, carbohydrate metabolism, and energy production. Furthermore, ATAC-seq analysis indicated increased chromatin accessibility in the promoter regions of key antioxidant genes under salt stress in Pokkali, reflecting enhanced transcriptional activity. Four key antioxidant-related genes-MnSOD1, OsAPx7, OsGR1, and Osppc3-were identified and validated by qPCR, showing significant upregulation in Pokkali. ATAC-seq data further supported that these genes had increased promoter accessibility under salt stress, aligning with the RNA-seq findings.</p><p><strong>Conclusion: </strong>This study underscores the critical role of antioxidant defense mechanisms in conferring salt tolerance in Pokkali. The identification of key genes involved in redox regulation provides valuable insights into the molecular basis of salt tolerance, offering potential targets for the genetic improvement of salt-sensitive rice varieties through breeding programs.</p>","PeriodicalId":9198,"journal":{"name":"BMC Plant Biology","volume":"25 1","pages":"364"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12870-025-06387-z","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Salt stress is one of the most significant environmental challenges, severely impacting rice growth and yield. While different rice varieties exhibit varying levels of tolerance to salinity, Pokkali, a traditional salt-tolerant variety, stands out for its ability to thrive in saline conditions. Understanding the molecular and physiological mechanisms that underpin this tolerance is essential for breeding and developing rice varieties with enhanced resilience to salt stress.

Methods: In this study, we selected the salt-tolerant rice variety Pokkali and the salt-sensitive variety IR29 for a controlled saline stress experiment. Plants were subjected to a 150 mM NaCl treatment for 7 days, after which leaf samples were collected from both varieties. Antioxidant physiological parameters were measured, and RNA-seq and ATAC-seq analyses were conducted to explore gene expression and chromatin accessibility. Key genes identified through sequencing were validated using RT-qPCR.

Results: Under salt stress, Pokkali demonstrated strong tolerance and a higher antioxidant capacity compared to IR29, as evidenced by increased survival rates and fresh weight. Pokkali also showed elevated activity of antioxidant enzymes such as superoxide dismutase, peroxidase, and catalase, along with reduced accumulation of hydrogen peroxide. Transcriptomic and ATAC-seq analyses revealed that Pokkali's upregulated genes were significantly enriched in pathways related to redox homeostasis. These genes were also involved in metabolic processes such as glycan biosynthesis, amino acid metabolism, carbohydrate metabolism, and energy production. Furthermore, ATAC-seq analysis indicated increased chromatin accessibility in the promoter regions of key antioxidant genes under salt stress in Pokkali, reflecting enhanced transcriptional activity. Four key antioxidant-related genes-MnSOD1, OsAPx7, OsGR1, and Osppc3-were identified and validated by qPCR, showing significant upregulation in Pokkali. ATAC-seq data further supported that these genes had increased promoter accessibility under salt stress, aligning with the RNA-seq findings.

Conclusion: This study underscores the critical role of antioxidant defense mechanisms in conferring salt tolerance in Pokkali. The identification of key genes involved in redox regulation provides valuable insights into the molecular basis of salt tolerance, offering potential targets for the genetic improvement of salt-sensitive rice varieties through breeding programs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RNA-seq和ATAC-seq整合分析揭示了耐盐水稻品种Pokkali的抗氧化防御机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Plant Biology
BMC Plant Biology 生物-植物科学
CiteScore
8.40
自引率
3.80%
发文量
539
审稿时长
3.8 months
期刊介绍: BMC Plant Biology is an open access, peer-reviewed journal that considers articles on all aspects of plant biology, including molecular, cellular, tissue, organ and whole organism research.
期刊最新文献
Genome-wide analysis of CHYR gene family and BnA03.CHYR.1 functional verification under salt stress in Brassica napus L. Geographical variation and the role of climate and soil on phenotypic traits of Calamus rhabdocladus across provenances in China. Integrative RNA-seq and ATAC-seq analysis unveils antioxidant defense mechanisms in salt-tolerant rice variety Pokkali. Isolation, characterization and screening of phosphate (P) solubilizing actinomycetes and exploring its potency in finger millet (Eleusine coracana L.). Combined transcriptomic and metabolomic analysis revealed the salt tolerance mechanism of Populus talassica × Populus euphratica.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1