Combined transcriptomic and metabolomic analysis revealed the salt tolerance mechanism of Populus talassica × Populus euphratica.

IF 4.3 2区 生物学 Q1 PLANT SCIENCES BMC Plant Biology Pub Date : 2025-03-20 DOI:10.1186/s12870-025-06288-1
Ying Liu, Mengxu Su, Xiaoqing Zhao, Meilin Liu, Jiaju Wu, Xiaofeng Wu, Zhanyuan Lu, Zhanjiang Han
{"title":"Combined transcriptomic and metabolomic analysis revealed the salt tolerance mechanism of Populus talassica × Populus euphratica.","authors":"Ying Liu, Mengxu Su, Xiaoqing Zhao, Meilin Liu, Jiaju Wu, Xiaofeng Wu, Zhanyuan Lu, Zhanjiang Han","doi":"10.1186/s12870-025-06288-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>To investigate the salt tolerance of Populus talassica × Populus euphratica, morphological and physiological parameters were measured on the second day after the 15th, 30th and 45th days of NaCl treatment, revealing significant effects of NaCl on growth. To further elucidate the mechanisms underlying salt tolerance, transcriptomic and metabolomic analysis were conducted under different NaCl treatments.</p><p><strong>Results: </strong>The results of morphological and physiological indexes showed that under low salt treatment, P. talassica × P. euphratica was able to coordinate the growth of aboveground and belowground parts. Under high salt concentration, the growth and water balance of P. talassica × P. euphratica were markedly inhibited. The most significant differences between treatments were observed on the second day after the 45th day of NaCl treatment. Transcriptomic analysis showed that the pathways of gene enrichment in the roots and stems of P. talassica × P. euphratica were different in the salt resistance response. And it involves several core pathways such as plant hormone signal transduction, phenylpropanoid biosynthesis, MAPK signaling pathway-plant, plant- pathogen interaction, carbon metabolism, biosynthesis of amino acids, and several key Transcription factors (TFs) such as AP2/ERF, NAC, WRKY and bZIP. Metabolomic analysis revealed that KEGG pathway enrichment analysis showed unique metabolic pathways were enriched in P. talassica × P. euphratica under both 200 mM and 400 mM NaCl treatments. Additionally, while there were some differences in the metabolic pathways enriched in the roots and stems, both tissues commonly enriched pathways related to the biosynthesis of secondary metabolites, biosynthesis of cofactors, biosynthesis of amino acids, flavonoid biosynthesis, and ABC transporters. Association analysis further indicated that biosynthesis of amino acids and plant hormone signal transduction pathway play key roles in the response of P. talassica × P. euphratica to salt stress. The interactions between the differentially expressed genes (DEGs) and several differentially accumulated metabolites (DAMs), especially the strong association between LOC105124002 and Jasmonoyl-L-Isoleucine (pme2074), were again revealed by the interactions analysis.</p><p><strong>Conclusions: </strong>In this study, we resolved the changes of metabolic pathways in roots and stems of P. talassica × P. euphratica under different NaCl treatments and explored the associations between characteristic DEGs and DAMs, which provided insights into the mechanisms of P. talassica × P. euphratica in response to salt stress.</p>","PeriodicalId":9198,"journal":{"name":"BMC Plant Biology","volume":"25 1","pages":"361"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12870-025-06288-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: To investigate the salt tolerance of Populus talassica × Populus euphratica, morphological and physiological parameters were measured on the second day after the 15th, 30th and 45th days of NaCl treatment, revealing significant effects of NaCl on growth. To further elucidate the mechanisms underlying salt tolerance, transcriptomic and metabolomic analysis were conducted under different NaCl treatments.

Results: The results of morphological and physiological indexes showed that under low salt treatment, P. talassica × P. euphratica was able to coordinate the growth of aboveground and belowground parts. Under high salt concentration, the growth and water balance of P. talassica × P. euphratica were markedly inhibited. The most significant differences between treatments were observed on the second day after the 45th day of NaCl treatment. Transcriptomic analysis showed that the pathways of gene enrichment in the roots and stems of P. talassica × P. euphratica were different in the salt resistance response. And it involves several core pathways such as plant hormone signal transduction, phenylpropanoid biosynthesis, MAPK signaling pathway-plant, plant- pathogen interaction, carbon metabolism, biosynthesis of amino acids, and several key Transcription factors (TFs) such as AP2/ERF, NAC, WRKY and bZIP. Metabolomic analysis revealed that KEGG pathway enrichment analysis showed unique metabolic pathways were enriched in P. talassica × P. euphratica under both 200 mM and 400 mM NaCl treatments. Additionally, while there were some differences in the metabolic pathways enriched in the roots and stems, both tissues commonly enriched pathways related to the biosynthesis of secondary metabolites, biosynthesis of cofactors, biosynthesis of amino acids, flavonoid biosynthesis, and ABC transporters. Association analysis further indicated that biosynthesis of amino acids and plant hormone signal transduction pathway play key roles in the response of P. talassica × P. euphratica to salt stress. The interactions between the differentially expressed genes (DEGs) and several differentially accumulated metabolites (DAMs), especially the strong association between LOC105124002 and Jasmonoyl-L-Isoleucine (pme2074), were again revealed by the interactions analysis.

Conclusions: In this study, we resolved the changes of metabolic pathways in roots and stems of P. talassica × P. euphratica under different NaCl treatments and explored the associations between characteristic DEGs and DAMs, which provided insights into the mechanisms of P. talassica × P. euphratica in response to salt stress.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
转录组和代谢组的联合分析揭示了杨树塔拉西卡×杨树的耐盐机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Plant Biology
BMC Plant Biology 生物-植物科学
CiteScore
8.40
自引率
3.80%
发文量
539
审稿时长
3.8 months
期刊介绍: BMC Plant Biology is an open access, peer-reviewed journal that considers articles on all aspects of plant biology, including molecular, cellular, tissue, organ and whole organism research.
期刊最新文献
Genome-wide analysis of CHYR gene family and BnA03.CHYR.1 functional verification under salt stress in Brassica napus L. Geographical variation and the role of climate and soil on phenotypic traits of Calamus rhabdocladus across provenances in China. Integrative RNA-seq and ATAC-seq analysis unveils antioxidant defense mechanisms in salt-tolerant rice variety Pokkali. Isolation, characterization and screening of phosphate (P) solubilizing actinomycetes and exploring its potency in finger millet (Eleusine coracana L.). Combined transcriptomic and metabolomic analysis revealed the salt tolerance mechanism of Populus talassica × Populus euphratica.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1