Juhee Jang, Jiwon Shin, Yongdeok Ahn, Kiwook Kim, Juhyeong Cho, Wonhee John Lee, Chaerin Nam, Moon-chang Baek, Daeha Seo, Kyungmoo Yea
{"title":"Modular and Nondisturbing Chimeric Adaptor Protein for Surface Chemistry of Small Extracellular Vesicles","authors":"Juhee Jang, Jiwon Shin, Yongdeok Ahn, Kiwook Kim, Juhyeong Cho, Wonhee John Lee, Chaerin Nam, Moon-chang Baek, Daeha Seo, Kyungmoo Yea","doi":"10.1021/acsnano.4c15441","DOIUrl":null,"url":null,"abstract":"Current chemical strategies for modifying the surface of extracellular vesicles (sEVs) often struggle to balance efficient functionalization with preserving structural integrity. Here, we present a modular approach for the surface modification of sEVs using a chimeric adaptor protein (CAP). The CAP was designed with three key features: a SNAP-tag for stable and modular binding, long and rigid linker to enhance spatial accessibility and conjugation efficiency, and the N-terminal sorting domain derived from syntenin to improve CAP expression on the sEV. We established a postsynthetic method to introduce diverse functional molecules onto sEVs, creating a versatile system termed “sEV-X” (where X represents an organic molecule, protein, or nanoparticle). Quantitative analyses at the single-molecule level revealed a linear relationship between CAP expression and the number of conjugated functional molecules, underscoring the importance of steric hindrance mitigation in sEV surface engineering. Moreover, antibody-conjugated sEVs as drug carriers, demonstrated significant tumor-specific delivery and therapeutic efficacy in a tumor-bearing mouse model, underscoring the potential of CAP-expressing sEVs as a customizable therapeutic vesicle. Overall, the CAP technology may serve as a universal platform for advancing the development of sEV-based therapeutics.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"8 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c15441","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Current chemical strategies for modifying the surface of extracellular vesicles (sEVs) often struggle to balance efficient functionalization with preserving structural integrity. Here, we present a modular approach for the surface modification of sEVs using a chimeric adaptor protein (CAP). The CAP was designed with three key features: a SNAP-tag for stable and modular binding, long and rigid linker to enhance spatial accessibility and conjugation efficiency, and the N-terminal sorting domain derived from syntenin to improve CAP expression on the sEV. We established a postsynthetic method to introduce diverse functional molecules onto sEVs, creating a versatile system termed “sEV-X” (where X represents an organic molecule, protein, or nanoparticle). Quantitative analyses at the single-molecule level revealed a linear relationship between CAP expression and the number of conjugated functional molecules, underscoring the importance of steric hindrance mitigation in sEV surface engineering. Moreover, antibody-conjugated sEVs as drug carriers, demonstrated significant tumor-specific delivery and therapeutic efficacy in a tumor-bearing mouse model, underscoring the potential of CAP-expressing sEVs as a customizable therapeutic vesicle. Overall, the CAP technology may serve as a universal platform for advancing the development of sEV-based therapeutics.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.