Tailoring Single Co–N4 Sites Within the Second Coordination Shell for Enhanced Natural Light-Driven Photosynthetic H2O2 Production

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2025-03-22 DOI:10.1021/acsnano.5c02303
Xiao Ge, Xinya Liu, Jinze Xu, Xiyang Zheng, Li-jiao Tian, Xiaozhi Wang
{"title":"Tailoring Single Co–N4 Sites Within the Second Coordination Shell for Enhanced Natural Light-Driven Photosynthetic H2O2 Production","authors":"Xiao Ge, Xinya Liu, Jinze Xu, Xiyang Zheng, Li-jiao Tian, Xiaozhi Wang","doi":"10.1021/acsnano.5c02303","DOIUrl":null,"url":null,"abstract":"Rational regulation of the coordination environment of single-atom catalysts (SACs) is a promising yet challenging strategy to enhance their activity. Here, we introduce an O atom into the second coordination shell of Co–N<sub>4</sub> sites via a simple thermal treatment, forming a Co–N<sub>4</sub>–ON matrix to boost photosynthetic hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) production. This modification significantly alters the electronic structure of the Co site, bringing the d-band center closer to the Fermi energy and elevating the conduction band of Co–N<sub>4</sub>–CN to enhance its reducing capacity. Density functional theory (DFT) calculations reveal intensified charge redistribution and a reduced work function in Co–N<sub>4</sub>–ON, facilitating O<sub>2</sub> adsorption. Notably, Co–N<sub>4</sub>–ON exhibits the lowest O<sub>2</sub> adsorption energy, indicating a stronger interaction between Co–N<sub>4</sub>–O and O<sub>2</sub>, which is further strengthened by orbital hybridization and charge transfer at their interface, leading to enhanced O<sub>2</sub> activation. The optimized Co–N<sub>4</sub>–ON catalyst demonstrates superior O<sub>2</sub> reduction capabilities with the lowest energy barrier during H<sub>2</sub>O<sub>2</sub> desorption. Consequently, it achieves a H<sub>2</sub>O<sub>2</sub> production rate of 3098.18 μmol g<sup>–1</sup> h<sup>–1</sup> under neutral conditions, which is 2.6 times higher than that of Co–N<sub>4</sub>–CN. Moreover, it maintains a production rate of 1967.79 μmol g<sup>–1</sup> h<sup>–1</sup> over 10 h in a continuous flow reactor under natural sunlight and ambient air, highlighting its durability and practicality. This study underscores the crucial role of the second coordination shell in SACs and offers valuable insights into their atomic-level structure–activity relationships, thus contributing to advancements in catalyst design for efficient photosynthetic H<sub>2</sub>O<sub>2</sub> production.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"59 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c02303","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Rational regulation of the coordination environment of single-atom catalysts (SACs) is a promising yet challenging strategy to enhance their activity. Here, we introduce an O atom into the second coordination shell of Co–N4 sites via a simple thermal treatment, forming a Co–N4–ON matrix to boost photosynthetic hydrogen peroxide (H2O2) production. This modification significantly alters the electronic structure of the Co site, bringing the d-band center closer to the Fermi energy and elevating the conduction band of Co–N4–CN to enhance its reducing capacity. Density functional theory (DFT) calculations reveal intensified charge redistribution and a reduced work function in Co–N4–ON, facilitating O2 adsorption. Notably, Co–N4–ON exhibits the lowest O2 adsorption energy, indicating a stronger interaction between Co–N4–O and O2, which is further strengthened by orbital hybridization and charge transfer at their interface, leading to enhanced O2 activation. The optimized Co–N4–ON catalyst demonstrates superior O2 reduction capabilities with the lowest energy barrier during H2O2 desorption. Consequently, it achieves a H2O2 production rate of 3098.18 μmol g–1 h–1 under neutral conditions, which is 2.6 times higher than that of Co–N4–CN. Moreover, it maintains a production rate of 1967.79 μmol g–1 h–1 over 10 h in a continuous flow reactor under natural sunlight and ambient air, highlighting its durability and practicality. This study underscores the crucial role of the second coordination shell in SACs and offers valuable insights into their atomic-level structure–activity relationships, thus contributing to advancements in catalyst design for efficient photosynthetic H2O2 production.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
Modular and Nondisturbing Chimeric Adaptor Protein for Surface Chemistry of Small Extracellular Vesicles Tailoring Single Co–N4 Sites Within the Second Coordination Shell for Enhanced Natural Light-Driven Photosynthetic H2O2 Production Electrical Control of Spin Polarization in a Multiferroic Heterojunction Based on One-Dimensional Chiral Hybrid Metal Halide A Hybrid Manganese Nanoparticle Simultaneously Eliminates Cancer Stem Cells and Activates STING Pathway to Potentiate Cancer Immunotherapy Effect of Engineered Cyanobacterial Capsules on a Neurogenic Bladder after Spinal Cord Injury
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1