Deformation and phase transformation of dual-phase Ti under tension and compression process

IF 2.1 4区 化学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Molecular Modeling Pub Date : 2025-03-24 DOI:10.1007/s00894-025-06349-0
Thi-Thuy Binh Ngo, Van-Thuc Nguyen, Te-Hua Fang
{"title":"Deformation and phase transformation of dual-phase Ti under tension and compression process","authors":"Thi-Thuy Binh Ngo,&nbsp;Van-Thuc Nguyen,&nbsp;Te-Hua Fang","doi":"10.1007/s00894-025-06349-0","DOIUrl":null,"url":null,"abstract":"<div><h3>Context</h3><p>This study utilizes molecular dynamics (MD) simulation to investigate polycrystalline dual-phase titanium (DP Ti) deformation behavior and phase transformation under tensile and compressive loading. The analysis focuses on the influence of hexagonal close-packed (HCP) phase fraction, strain rate, and temperature on the mechanical properties and microstructural evolution. The results indicate that increasing the HCP phase fraction enhances the elastic modulus (36.5%), yield strength, and strain hardening while maintaining acceptable ductility. The optimal mechanical performance is achieved at 75.4% HCP phase fraction. Strain rate has significantly influenced mechanical response, with higher rates promoting increased yield strength, elastic modulus, dislocation activity, and phase transformations to body-centered cubic (BCC) and amorphous phases. In contrast, raising the temperature from 300 to 900 K results in thermal softening, reduced strength, and diminished dislocation activity, alongside pronounced HCP-to-BCC phase transformation. Interphase boundaries are critical in shaping the deformation mechanisms, influencing dislocation evolution and strain hardening. During deformation, Shockley, Hirth, and other partial dislocations appear. These findings offer valuable insights into the deformation mechanisms and phase behavior of DP Ti, emphasizing its potential for applications requiring a balance between strength and ductility.</p><h3>Methods</h3><p>The simulations utilized the open-source software LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) for modeling atomic-scale interactions. Visualization of the evolving atomic structures was performed using OVITO (Open Visualization Tool). To analyze microstructural changes, the Dislocation Extraction Algorithm (DXA) and Common Neighbor Analysis (CNA) methods were employed.</p></div>","PeriodicalId":651,"journal":{"name":"Journal of Molecular Modeling","volume":"31 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Modeling","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00894-025-06349-0","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Context

This study utilizes molecular dynamics (MD) simulation to investigate polycrystalline dual-phase titanium (DP Ti) deformation behavior and phase transformation under tensile and compressive loading. The analysis focuses on the influence of hexagonal close-packed (HCP) phase fraction, strain rate, and temperature on the mechanical properties and microstructural evolution. The results indicate that increasing the HCP phase fraction enhances the elastic modulus (36.5%), yield strength, and strain hardening while maintaining acceptable ductility. The optimal mechanical performance is achieved at 75.4% HCP phase fraction. Strain rate has significantly influenced mechanical response, with higher rates promoting increased yield strength, elastic modulus, dislocation activity, and phase transformations to body-centered cubic (BCC) and amorphous phases. In contrast, raising the temperature from 300 to 900 K results in thermal softening, reduced strength, and diminished dislocation activity, alongside pronounced HCP-to-BCC phase transformation. Interphase boundaries are critical in shaping the deformation mechanisms, influencing dislocation evolution and strain hardening. During deformation, Shockley, Hirth, and other partial dislocations appear. These findings offer valuable insights into the deformation mechanisms and phase behavior of DP Ti, emphasizing its potential for applications requiring a balance between strength and ductility.

Methods

The simulations utilized the open-source software LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) for modeling atomic-scale interactions. Visualization of the evolving atomic structures was performed using OVITO (Open Visualization Tool). To analyze microstructural changes, the Dislocation Extraction Algorithm (DXA) and Common Neighbor Analysis (CNA) methods were employed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
Deformation behavior and phase transformation of a dual-phase Mg−8.9Li−2.7Al-0.85Si alloy under compression test at elevated temperatures
IF 6.2 2区 材料科学Journal of Alloys and CompoundsPub Date : 2022-12-15 DOI: 10.1016/j.jallcom.2022.167034
Junwei Liu , Chenhui Li , Huiyang Lu , Yongquan He , Ying Wang , Guobing Wei
Phase transformation and deformation behavior under isothermal compression in β-quenched metastable Ti-10V-2Fe-3Al alloy
IF 3.8 3区 材料科学Materials Today CommunicationsPub Date : 2023-11-30 DOI: 10.1016/j.mtcomm.2023.107727
E Zhu, Fuguo Li, Qian Zhao, Xuehan An, Siddique Farah, Kenan Yao
Deformation behavior, microstructure evolution and phase transformation of dual-phase Mg-Li-Zn-Sr-Ca alloy under isothermal compression
IF 5.8 2区 材料科学Journal of Alloys and CompoundsPub Date : 2024-08-10 DOI: 10.1016/j.jallcom.2024.175933
Kun Yang , Bin Li , Hao Chen , Guo Li , Guobing Wei , Weidong Xie , Yan Yang , Xiaodong Peng
来源期刊
Journal of Molecular Modeling
Journal of Molecular Modeling 化学-化学综合
CiteScore
3.50
自引率
4.50%
发文量
362
审稿时长
2.9 months
期刊介绍: The Journal of Molecular Modeling focuses on "hardcore" modeling, publishing high-quality research and reports. Founded in 1995 as a purely electronic journal, it has adapted its format to include a full-color print edition, and adjusted its aims and scope fit the fast-changing field of molecular modeling, with a particular focus on three-dimensional modeling. Today, the journal covers all aspects of molecular modeling including life science modeling; materials modeling; new methods; and computational chemistry. Topics include computer-aided molecular design; rational drug design, de novo ligand design, receptor modeling and docking; cheminformatics, data analysis, visualization and mining; computational medicinal chemistry; homology modeling; simulation of peptides, DNA and other biopolymers; quantitative structure-activity relationships (QSAR) and ADME-modeling; modeling of biological reaction mechanisms; and combined experimental and computational studies in which calculations play a major role.
期刊最新文献
Deformation and phase transformation of dual-phase Ti under tension and compression process Interactions of flavonoid and coumarin derivative compounds with transforming growth factor-beta receptor 1 (TGF-βR1): integrating virtual screening, molecular dynamics, maximum common substructure, and ADMET approaches in the treatment of idiopathic pulmonary fibrosis Simulation study on the influence of typical wave profiles on HMX with nanovoids hotspot temperature and decomposition reaction Theoretical study of the interaction of the potentially toxic contaminants Hg2+, CH3Hg+, CH3CH2Hg+, and C6H5Hg+ with a B3O3 monolayer matrix Structural insights into molecular and cellular level FXR binding potentials of GW4064 and LY2562175 hybrids by multi in silico modelling analyses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1