Nanosilicon-based vermicompost leachate and Trichoderma harzianum promote the growth of Panax quinquefolius L. cultivated under forests by improving soil enzyme activity

IF 6.1 2区 生物学 Q1 PLANT SCIENCES Plant Physiology and Biochemistry Pub Date : 2025-03-20 DOI:10.1016/j.plaphy.2025.109811
Qiaoran Ma , Guobing Tian , Shengchao Yang , Junwen Chen , Wei Fan , Ping Zhao , Yan Wang , Jiamin Liu , Yonglin Liu , Shuhui Zi , Shuran He
{"title":"Nanosilicon-based vermicompost leachate and Trichoderma harzianum promote the growth of Panax quinquefolius L. cultivated under forests by improving soil enzyme activity","authors":"Qiaoran Ma ,&nbsp;Guobing Tian ,&nbsp;Shengchao Yang ,&nbsp;Junwen Chen ,&nbsp;Wei Fan ,&nbsp;Ping Zhao ,&nbsp;Yan Wang ,&nbsp;Jiamin Liu ,&nbsp;Yonglin Liu ,&nbsp;Shuhui Zi ,&nbsp;Shuran He","doi":"10.1016/j.plaphy.2025.109811","DOIUrl":null,"url":null,"abstract":"<div><div>Planting vegetation under forests in agroforestry systems fosters sustainable agricultural development. However, Limited availability of biostimulants for agroforestry and unclear mechanisms of plant growth promotion. This study synthesized and evaluated a novel biostimulant, nanosilicon-based vermicompost leachate (NSVCL), using <em>Panax quinquefolius</em> L. as the research plant species for forest cultivation. <em>Trichoderma harzianum</em> (TH) was chosen to represent a biostimulant with broad-spectrum properties, and its application effects were compared with NSVCL. The regulatory effects of both on the physiological characteristics and rhizosphere soil microenvironment of <em>P. quinquefolius</em> were investigated, with untreated plants serving as controls. Compared to the control, NSVCL and TH increased the dry weight of <em>P. quinquefolius</em> roots 129.33 % and 23.50 %, respectively. NSVCL was applied more effectively than TH. Additionally, NSVCL markedly improved leaf anatomical traits, including palisade and spongy tissue thickness, overall leaf thickness, chloroplast number, and cuticle thickness. Application of NSVCL and TH significantly elevated the net photosynthetic rate (Pn) by 86.55 % and 60.92 %, respectively, and increased total chlorophyll content (TChl) by 24.91 % and 11.76 %. Biostimulants facilitated nutrient uptake and boosted antioxidant enzyme activity in <em>P. quinquefolius</em>. Partial least squares path modeling (PLS-PM) further demonstrated that both NSVCL and TH promoted plant growth by enhancing soil enzyme activity in forest environments. These findings underscore NSVCL's efficacy in improving <em>P. quinquefolius</em> growth under forest conditions and provide a practical foundation for advancing organic forest cultivation and sustainable forest-medicine integration.</div></div>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"223 ","pages":"Article 109811"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0981942825003390","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Planting vegetation under forests in agroforestry systems fosters sustainable agricultural development. However, Limited availability of biostimulants for agroforestry and unclear mechanisms of plant growth promotion. This study synthesized and evaluated a novel biostimulant, nanosilicon-based vermicompost leachate (NSVCL), using Panax quinquefolius L. as the research plant species for forest cultivation. Trichoderma harzianum (TH) was chosen to represent a biostimulant with broad-spectrum properties, and its application effects were compared with NSVCL. The regulatory effects of both on the physiological characteristics and rhizosphere soil microenvironment of P. quinquefolius were investigated, with untreated plants serving as controls. Compared to the control, NSVCL and TH increased the dry weight of P. quinquefolius roots 129.33 % and 23.50 %, respectively. NSVCL was applied more effectively than TH. Additionally, NSVCL markedly improved leaf anatomical traits, including palisade and spongy tissue thickness, overall leaf thickness, chloroplast number, and cuticle thickness. Application of NSVCL and TH significantly elevated the net photosynthetic rate (Pn) by 86.55 % and 60.92 %, respectively, and increased total chlorophyll content (TChl) by 24.91 % and 11.76 %. Biostimulants facilitated nutrient uptake and boosted antioxidant enzyme activity in P. quinquefolius. Partial least squares path modeling (PLS-PM) further demonstrated that both NSVCL and TH promoted plant growth by enhancing soil enzyme activity in forest environments. These findings underscore NSVCL's efficacy in improving P. quinquefolius growth under forest conditions and provide a practical foundation for advancing organic forest cultivation and sustainable forest-medicine integration.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Physiology and Biochemistry
Plant Physiology and Biochemistry 生物-植物科学
CiteScore
11.10
自引率
3.10%
发文量
410
审稿时长
33 days
期刊介绍: Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement. Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB. Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.
期刊最新文献
Phosphorus and sulphur crosstalk in cereals: Unraveling the molecular interplay, agronomic impacts on yield and heavy metal tolerance Multi-omics reveal the molecular mechanisms of Sodium Nitrophenolate in enhancing cold tolerance through hormonal and antioxidant pathways in cucumber Effects of bleeding on stem physiology of Actinidia arguta (Sieb. & Zucc) Planch. ex miq. and metabolomics analysis of bleeding sap Identification of the WRKY gene family in Bergenia purpurascens and functional analysis of BpWRKY13 under cold stress Sex-specific ozone stress responses of poplar: Mechanisms of enhanced tolerance of males
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1