Sana Pirmardvand Chegini, Jaleh Varshosaz, Somayeh Taymouri
{"title":"Recent approaches for targeted drug delivery in rheumatoid arthritis diagnosis and treatment.","authors":"Sana Pirmardvand Chegini, Jaleh Varshosaz, Somayeh Taymouri","doi":"10.1080/21691401.2018.1460373","DOIUrl":null,"url":null,"abstract":"<p><p>Rheumatoid arthritis (RA) is a chronic inflammatory disease with complex pathology characterized by inflammation of joints, devastation of the synovium, pannus formation, bones and cartilage destruction and often is associated with persistent arthritic pain, swelling, stiffness and work disability. In conventional RA therapy, because of short biological half-life, poor bioavailability, high and frequent dosing is required. Thereby, these anti-RA medications, which unable to selectively target affected zone, may cause severe side effects in extra-articular tissues. Today, nanotechnology has emerged as promising tool in the development of novel drug delivery systems for the treatment and diagnosis of intractable diseases such as RA. Active targeting in RA nanomedicine has also been introduced a successful way for facilitating specific uptake of therapeutic agents by the disease cells. In this review, it is attempted to describe various targeted drug delivery systems (localized and receptor-based) used for RA diagnosis and therapy. Then, we highlight recent developments related to various non-viral gene delivery systems for RA gene therapy.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"46 sup2","pages":"502-514"},"PeriodicalIF":4.5000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21691401.2018.1460373","citationCount":"69","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Cells, Nanomedicine, and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21691401.2018.1460373","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/4/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 69
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease with complex pathology characterized by inflammation of joints, devastation of the synovium, pannus formation, bones and cartilage destruction and often is associated with persistent arthritic pain, swelling, stiffness and work disability. In conventional RA therapy, because of short biological half-life, poor bioavailability, high and frequent dosing is required. Thereby, these anti-RA medications, which unable to selectively target affected zone, may cause severe side effects in extra-articular tissues. Today, nanotechnology has emerged as promising tool in the development of novel drug delivery systems for the treatment and diagnosis of intractable diseases such as RA. Active targeting in RA nanomedicine has also been introduced a successful way for facilitating specific uptake of therapeutic agents by the disease cells. In this review, it is attempted to describe various targeted drug delivery systems (localized and receptor-based) used for RA diagnosis and therapy. Then, we highlight recent developments related to various non-viral gene delivery systems for RA gene therapy.
期刊介绍:
Artificial Cells, Nanomedicine and Biotechnology covers the frontiers of interdisciplinary research and application, combining artificial cells, nanotechnology, nanobiotechnology, biotechnology, molecular biology, bioencapsulation, novel carriers, stem cells and tissue engineering. Emphasis is on basic research, applied research, and clinical and industrial applications of the following topics:artificial cellsblood substitutes and oxygen therapeuticsnanotechnology, nanobiotecnology, nanomedicinetissue engineeringstem cellsbioencapsulationmicroencapsulation and nanoencapsulationmicroparticles and nanoparticlesliposomescell therapy and gene therapyenzyme therapydrug delivery systemsbiodegradable and biocompatible polymers for scaffolds and carriersbiosensorsimmobilized enzymes and their usesother biotechnological and nanobiotechnological approachesRapid progress in modern research cannot be carried out in isolation and is based on the combined use of the different novel approaches. The interdisciplinary research involving novel approaches, as discussed above, has revolutionized this field resulting in rapid developments. This journal serves to bring these different, modern and futuristic approaches together for the academic, clinical and industrial communities to allow for even greater developments of this highly interdisciplinary area.