Annalisa La Gatta, Antonella D'Agostino, Chiara Schiraldi, Giuseppe Colella, Nicola Cirillo
{"title":"A biophysically-defined hyaluronic acid-based compound accelerates migration and stimulates the production of keratinocyte-derived neuromodulators.","authors":"Annalisa La Gatta, Antonella D'Agostino, Chiara Schiraldi, Giuseppe Colella, Nicola Cirillo","doi":"10.1080/19336918.2018.1494997","DOIUrl":null,"url":null,"abstract":"<p><p>Hyaluronic acid (HA) preparations are widely used in clinical practice and recent data suggest that commercially available HA-based compounds promote ulcer re-epithelialization and induce pain relief. However, the pathophysiological basis of these effects remains poorly understood. In the present study, we investigated the biophysical, biomolecular and functional properties of a HA preparation combined with a pool of collagen precursor synthetic aminoacids, namely l-proline, l-leucine, l-lysine and glycine (Aminogam®). Hydrodynamic characterization of Aminogam® by size exclusion chromatography-triple detector array (SEC-TDA) revealed an average molecular weight in the range of 700-1700 kDa. Rheological measurements of the 1700kDa M<sub>w</sub> lot showed a pseoudoplastic behaviour with a zero-shear viscosity (η<sub>0</sub>) equal to 90 ± 9 Pa∙s at 25°C and 55 ± 6 Pa∙s at 37°C. Automated time-lapse videomicroscopy studies in a fibroblast-free system demonstrated that 1% (v/v) Aminogam® significantly reduced the healing time of wounded keratinocyte monolayers. In AKGOS assays, Aminogam® stimulated cellular locomotion (chemokinesis) and directional migration (chemotaxis) of keratinocytes. Analysis of microarray data suggested that keratinocytes had a functional neuroendocrine machinery, and this was confirmed by testing the secretion of six neuroactive molecules by ELISA, namely α-MSH, β-endorphins, melatonin, substance P, cortisol, and neurotensin. Interestingly, Aminogam® regulated the production of several neuropeptides, including β-endorphins. In conclusion, our data shed light on the epithelial-dependent mechanisms that underlie the efficacy of Aminogam®, particularly in reference to wound healing and nociception.</p>","PeriodicalId":9680,"journal":{"name":"Cell Adhesion & Migration","volume":"13 1","pages":"23-32"},"PeriodicalIF":3.3000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336918.2018.1494997","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Adhesion & Migration","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/19336918.2018.1494997","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/8/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 4
Abstract
Hyaluronic acid (HA) preparations are widely used in clinical practice and recent data suggest that commercially available HA-based compounds promote ulcer re-epithelialization and induce pain relief. However, the pathophysiological basis of these effects remains poorly understood. In the present study, we investigated the biophysical, biomolecular and functional properties of a HA preparation combined with a pool of collagen precursor synthetic aminoacids, namely l-proline, l-leucine, l-lysine and glycine (Aminogam®). Hydrodynamic characterization of Aminogam® by size exclusion chromatography-triple detector array (SEC-TDA) revealed an average molecular weight in the range of 700-1700 kDa. Rheological measurements of the 1700kDa Mw lot showed a pseoudoplastic behaviour with a zero-shear viscosity (η0) equal to 90 ± 9 Pa∙s at 25°C and 55 ± 6 Pa∙s at 37°C. Automated time-lapse videomicroscopy studies in a fibroblast-free system demonstrated that 1% (v/v) Aminogam® significantly reduced the healing time of wounded keratinocyte monolayers. In AKGOS assays, Aminogam® stimulated cellular locomotion (chemokinesis) and directional migration (chemotaxis) of keratinocytes. Analysis of microarray data suggested that keratinocytes had a functional neuroendocrine machinery, and this was confirmed by testing the secretion of six neuroactive molecules by ELISA, namely α-MSH, β-endorphins, melatonin, substance P, cortisol, and neurotensin. Interestingly, Aminogam® regulated the production of several neuropeptides, including β-endorphins. In conclusion, our data shed light on the epithelial-dependent mechanisms that underlie the efficacy of Aminogam®, particularly in reference to wound healing and nociception.
期刊介绍:
Cell Adhesion & Migration is a multi-disciplinary, peer reviewed open access journal that focuses on the biological or pathological implications of cell-cell and cell-microenvironment interactions. The main focus of this journal is fundamental science. The journal strives to serve a broad readership by regularly publishing review articles covering specific disciplines within the field, and by publishing focused issues that provide an overview on specific topics of interest within the field.
Cell Adhesion & Migration publishes relevant and timely original research, as well as authoritative overviews, commentaries, and perspectives, providing context for the work presented in Cell Adhesion & Migration and for key results published elsewhere. Original research papers may cover all topics important in the field of cell-cell and cell-matrix interactions. Cell Adhesion & Migration also publishes articles related to cell biomechanics, biomaterial, and development of related imaging technologies.