Decreased expression of circ_0020397 in intracranial aneurysms may be contributing to decreased vascular smooth muscle cell proliferation via increased expression of miR-138 and subsequent decreased KDR expression.
Yushe Wang, Yong Wang, Yu Li, Bin Wang, Zhuang Miao, Xianzhi Liu, Yuanyuan Ma
{"title":"Decreased expression of circ_0020397 in intracranial aneurysms may be contributing to decreased vascular smooth muscle cell proliferation via increased expression of miR-138 and subsequent decreased KDR expression.","authors":"Yushe Wang, Yong Wang, Yu Li, Bin Wang, Zhuang Miao, Xianzhi Liu, Yuanyuan Ma","doi":"10.1080/19336918.2019.1619432","DOIUrl":null,"url":null,"abstract":"<p><p>Dysfunction of vascular smooth muscle cells (VSMCs) mediates intracranial aneurysm (IA). KDR is reported to alleviate IA progression via promoting VSMC proliferation, while the upstream regulators are still unclear. Arterial wall tissues at the aneurysm site from 12 patients were obtained. The real-time PCR result indicated that circRNA_0020397 was down-regulated, but miR-138 was up-regulated in artery wall tissues and cells of IA. Overexpressed circRNA_0020397 promoted proliferation of human umbilical artery SMCs. MiR-138 negatively regulated KDR via binding with 3'UTR of KDR mRNA. The expression of circRNA_0020397 was negatively correlated with miR-138. In conclusion, our findings demonstrated that decreased expression of circRNA_0020397 in IA may contribute to the decreased VSMC proliferation via increasing miR-138 expression and subsequently decreasing KDR expression.</p>","PeriodicalId":9680,"journal":{"name":"Cell Adhesion & Migration","volume":"13 1","pages":"220-228"},"PeriodicalIF":3.3000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336918.2019.1619432","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Adhesion & Migration","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/19336918.2019.1619432","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 27
Abstract
Dysfunction of vascular smooth muscle cells (VSMCs) mediates intracranial aneurysm (IA). KDR is reported to alleviate IA progression via promoting VSMC proliferation, while the upstream regulators are still unclear. Arterial wall tissues at the aneurysm site from 12 patients were obtained. The real-time PCR result indicated that circRNA_0020397 was down-regulated, but miR-138 was up-regulated in artery wall tissues and cells of IA. Overexpressed circRNA_0020397 promoted proliferation of human umbilical artery SMCs. MiR-138 negatively regulated KDR via binding with 3'UTR of KDR mRNA. The expression of circRNA_0020397 was negatively correlated with miR-138. In conclusion, our findings demonstrated that decreased expression of circRNA_0020397 in IA may contribute to the decreased VSMC proliferation via increasing miR-138 expression and subsequently decreasing KDR expression.
期刊介绍:
Cell Adhesion & Migration is a multi-disciplinary, peer reviewed open access journal that focuses on the biological or pathological implications of cell-cell and cell-microenvironment interactions. The main focus of this journal is fundamental science. The journal strives to serve a broad readership by regularly publishing review articles covering specific disciplines within the field, and by publishing focused issues that provide an overview on specific topics of interest within the field.
Cell Adhesion & Migration publishes relevant and timely original research, as well as authoritative overviews, commentaries, and perspectives, providing context for the work presented in Cell Adhesion & Migration and for key results published elsewhere. Original research papers may cover all topics important in the field of cell-cell and cell-matrix interactions. Cell Adhesion & Migration also publishes articles related to cell biomechanics, biomaterial, and development of related imaging technologies.