{"title":"Telomere Dysfunction as an Initiator of Inflammation: Clues to an Age-Old Mystery.","authors":"Deepavali Chakravarti, Ronald A DePinho","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Inflammatory Bowel Disease (IBD) is a challenging medical condition that is driven by various genetic and environmental factors. Therapeutic opportunities for this disease remain limited due to the lack of in-depth understanding of the pathogenetic mechanisms and actionable targets driving the disease. Analysis of telomere dysfunctional mice and patients with genetic defects in telomere maintenance unexpectedly revealed phenotypes mirroring those observed in IBD. Molecular characterization of this model identified a pathway driven by telomere DNA damage-mediated activation of the ATM/cABL/YAP1 pathway, which directly regulates genes central to IBD pathogenesis and amenable to therapeutic intervention. This review summarizes the evidence correlating telomere dysfunction with IBD and colitis-associated cancer and proposes therapeutic opportunities for such inflammatory conditions targeting this newly identified pathway.</p>","PeriodicalId":91544,"journal":{"name":"Journal of inflammatory bowel diseases & disorders","volume":"6 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8516314/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of inflammatory bowel diseases & disorders","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/2/17 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Inflammatory Bowel Disease (IBD) is a challenging medical condition that is driven by various genetic and environmental factors. Therapeutic opportunities for this disease remain limited due to the lack of in-depth understanding of the pathogenetic mechanisms and actionable targets driving the disease. Analysis of telomere dysfunctional mice and patients with genetic defects in telomere maintenance unexpectedly revealed phenotypes mirroring those observed in IBD. Molecular characterization of this model identified a pathway driven by telomere DNA damage-mediated activation of the ATM/cABL/YAP1 pathway, which directly regulates genes central to IBD pathogenesis and amenable to therapeutic intervention. This review summarizes the evidence correlating telomere dysfunction with IBD and colitis-associated cancer and proposes therapeutic opportunities for such inflammatory conditions targeting this newly identified pathway.