Use of random integration to test equality of high dimensional covariance matrices.

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2023-10-01 DOI:10.5705/ss.202020.0486
Yunlu Jiang, Canhong Wen, Yukang Jiang, Xueqin Wang, Heping Zhang
{"title":"Use of random integration to test equality of high dimensional covariance matrices.","authors":"Yunlu Jiang, Canhong Wen, Yukang Jiang, Xueqin Wang, Heping Zhang","doi":"10.5705/ss.202020.0486","DOIUrl":null,"url":null,"abstract":"<p><p>Testing the equality of two covariance matrices is a fundamental problem in statistics, and especially challenging when the data are high-dimensional. Through a novel use of random integration, we can test the equality of high-dimensional covariance matrices without assuming parametric distributions for the two underlying populations, even if the dimension is much larger than the sample size. The asymptotic properties of our test for arbitrary number of covariates and sample size are studied in depth under a general multivariate model. The finite-sample performance of our test is evaluated through numerical studies. The empirical results demonstrate that our test is highly competitive with existing tests in a wide range of settings. In particular, our proposed test is distinctly powerful under different settings when there exist a few large or many small diagonal disturbances between the two covariance matrices.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10550010/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5705/ss.202020.0486","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Testing the equality of two covariance matrices is a fundamental problem in statistics, and especially challenging when the data are high-dimensional. Through a novel use of random integration, we can test the equality of high-dimensional covariance matrices without assuming parametric distributions for the two underlying populations, even if the dimension is much larger than the sample size. The asymptotic properties of our test for arbitrary number of covariates and sample size are studied in depth under a general multivariate model. The finite-sample performance of our test is evaluated through numerical studies. The empirical results demonstrate that our test is highly competitive with existing tests in a wide range of settings. In particular, our proposed test is distinctly powerful under different settings when there exist a few large or many small diagonal disturbances between the two covariance matrices.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用随机积分来检验高维协方差矩阵的相等性。
检验两个协方差矩阵的相等性是统计学中的一个基本问题,当数据是高维时尤其具有挑战性。通过一种新的随机积分方法,我们可以在不假设两个潜在群体的参数分布的情况下测试高维协方差矩阵的相等性,即使维数远大于样本量。在一般的多元模型下,深入研究了我们对任意数量的协变量和样本大小的检验的渐近性质。通过数值研究评估了我们测试的有限样本性能。实证结果表明,我们的测试在广泛的环境中与现有测试具有很强的竞争力。特别地,当两个协方差矩阵之间存在一些大的或许多小的对角扰动时,我们提出的测试在不同的设置下是明显强大的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1