Slicing-free Inverse Regression in High-dimensional Sufficient Dimension Reduction

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2023-04-13 DOI:10.5705/ss.202022.0112
Qing Mai, X. Shao, Runmin Wang, Xin Zhang
{"title":"Slicing-free Inverse Regression in High-dimensional Sufficient Dimension Reduction","authors":"Qing Mai, X. Shao, Runmin Wang, Xin Zhang","doi":"10.5705/ss.202022.0112","DOIUrl":null,"url":null,"abstract":"Sliced inverse regression (SIR, Li 1991) is a pioneering work and the most recognized method in sufficient dimension reduction. While promising progress has been made in theory and methods of high-dimensional SIR, two remaining challenges are still nagging high-dimensional multivariate applications. First, choosing the number of slices in SIR is a difficult problem, and it depends on the sample size, the distribution of variables, and other practical considerations. Second, the extension of SIR from univariate response to multivariate is not trivial. Targeting at the same dimension reduction subspace as SIR, we propose a new slicing-free method that provides a unified solution to sufficient dimension reduction with high-dimensional covariates and univariate or multivariate response. We achieve this by adopting the recently developed martingale difference divergence matrix (MDDM, Lee&Shao 2018) and penalized eigen-decomposition algorithms. To establish the consistency of our method with a high-dimensional predictor and a multivariate response, we develop a new concentration inequality for sample MDDM around its population counterpart using theories for U-statistics, which may be of independent interest. Simulations and real data analysis demonstrate the favorable finite sample performance of the proposed method.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5705/ss.202022.0112","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Sliced inverse regression (SIR, Li 1991) is a pioneering work and the most recognized method in sufficient dimension reduction. While promising progress has been made in theory and methods of high-dimensional SIR, two remaining challenges are still nagging high-dimensional multivariate applications. First, choosing the number of slices in SIR is a difficult problem, and it depends on the sample size, the distribution of variables, and other practical considerations. Second, the extension of SIR from univariate response to multivariate is not trivial. Targeting at the same dimension reduction subspace as SIR, we propose a new slicing-free method that provides a unified solution to sufficient dimension reduction with high-dimensional covariates and univariate or multivariate response. We achieve this by adopting the recently developed martingale difference divergence matrix (MDDM, Lee&Shao 2018) and penalized eigen-decomposition algorithms. To establish the consistency of our method with a high-dimensional predictor and a multivariate response, we develop a new concentration inequality for sample MDDM around its population counterpart using theories for U-statistics, which may be of independent interest. Simulations and real data analysis demonstrate the favorable finite sample performance of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高维充分降维中的无切片逆回归
切片逆回归(SIR, Li, 1991)是一项开创性的工作,也是最被认可的充分降维方法。虽然在高维SIR的理论和方法方面取得了可喜的进展,但仍有两个挑战困扰着高维多变量SIR的应用。首先,在SIR中选择切片的数量是一个难题,它取决于样本量、变量分布和其他实际考虑因素。其次,SIR从单变量响应到多变量响应的扩展并非微不足道。针对与SIR相同的降维子空间,我们提出了一种新的无切片方法,该方法提供了具有高维协变量和单变量或多变量响应的充分降维的统一解。我们通过采用最近开发的鞅差分散度矩阵(MDDM, Lee&Shao 2018)和惩罚特征分解算法来实现这一点。为了建立我们的方法与高维预测器和多变量响应的一致性,我们使用u统计理论为样本MDDM在其人口对应物周围建立了一个新的浓度不等式,这可能是独立的兴趣。仿真和实际数据分析表明,该方法具有良好的有限样本性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1