{"title":"Dynamics of nutrient availability in tomato production with organic fertilisers","authors":"K. Bergstrand, K. Löfkvist, H. Asp","doi":"10.1080/01448765.2020.1779816","DOIUrl":null,"url":null,"abstract":"ABSTRACT In greenhouse organic horticulture there is a great challenge in supplying the crop with adequate amounts of nutrients at the right stage of crop development. This has been identified as one of the main factors compromising yields in organic systems as compared with conventional hydroponic systems based on the use of synthetic fertilisers. In organic systems, the supply of nutrients is reliant on microbial degradation of organic complexes, a process that is dependent on factors such as temperature, soil water content and pH. Different organic fertilisers will also have different characteristics with respect to mineralisation of nutrients. In order to evaluate different strategies for organic fertilisation in long-term greenhouse crops such as high-wire tomato crops, an experiment with three different treatments was performed. The different strategies evaluated were one based on blood meal, kalimagnesia and the commercial product Baralith Enslow (composed of clay and ground lucerne), one with poultry manure and kalimagnesia, and one with solid biogas digestate and kalimagnesia. A five-month tomato crop was grown. Lysimeter samples were taken from the growing media biweekly for monitoring of plant available nutrients. The results suggested that nitrogen was likely to have been the limiting factor for plant growth, however, the biogas digestate delivered mineralised nitrogen throughout the experiment.","PeriodicalId":8904,"journal":{"name":"Biological Agriculture & Horticulture","volume":"36 1","pages":"200 - 212"},"PeriodicalIF":1.4000,"publicationDate":"2020-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01448765.2020.1779816","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Agriculture & Horticulture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/01448765.2020.1779816","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 13
Abstract
ABSTRACT In greenhouse organic horticulture there is a great challenge in supplying the crop with adequate amounts of nutrients at the right stage of crop development. This has been identified as one of the main factors compromising yields in organic systems as compared with conventional hydroponic systems based on the use of synthetic fertilisers. In organic systems, the supply of nutrients is reliant on microbial degradation of organic complexes, a process that is dependent on factors such as temperature, soil water content and pH. Different organic fertilisers will also have different characteristics with respect to mineralisation of nutrients. In order to evaluate different strategies for organic fertilisation in long-term greenhouse crops such as high-wire tomato crops, an experiment with three different treatments was performed. The different strategies evaluated were one based on blood meal, kalimagnesia and the commercial product Baralith Enslow (composed of clay and ground lucerne), one with poultry manure and kalimagnesia, and one with solid biogas digestate and kalimagnesia. A five-month tomato crop was grown. Lysimeter samples were taken from the growing media biweekly for monitoring of plant available nutrients. The results suggested that nitrogen was likely to have been the limiting factor for plant growth, however, the biogas digestate delivered mineralised nitrogen throughout the experiment.
期刊介绍:
Biological Agriculture & Horticulture aims to act as the central focus for a wide range of studies into alternative systems of husbandry, and particularly the biological or organic approach to food production. The Journal publishes work of a sound scientific or economic nature related to any aspect of biological husbandry in agriculture, horticulture and forestry in both temperate and tropical conditions, including energy and water utilization, and environmental impact.