Recent advances in T-cell receptor repertoire analysis: Bridging the gap with multimodal single-cell RNA sequencing

Sebastiaan Valkiers , Nicky de Vrij , Sofie Gielis , Sara Verbandt , Benson Ogunjimi , Kris Laukens , Pieter Meysman
{"title":"Recent advances in T-cell receptor repertoire analysis: Bridging the gap with multimodal single-cell RNA sequencing","authors":"Sebastiaan Valkiers ,&nbsp;Nicky de Vrij ,&nbsp;Sofie Gielis ,&nbsp;Sara Verbandt ,&nbsp;Benson Ogunjimi ,&nbsp;Kris Laukens ,&nbsp;Pieter Meysman","doi":"10.1016/j.immuno.2022.100009","DOIUrl":null,"url":null,"abstract":"<div><p>T cells exercise a multitude of functions such as cytotoxicity, secretion of immunomodulating cytokines or regulation of tolerance, collectively resulting in an effective control of immune-related disease. Through the unique mechanism of V(D)J recombination, T cells express a highly specific receptor complex known as the T-cell receptor (TCR). Single-cell sequencing technologies have paved the road for interrogating the transcriptome and the paired αβ TCR repertoire of a single T cell in tandem. In contrast, conventional bulk methods are restricted to only one layer of information. This combination of transcriptomic- and repertoire information can provide novel insight into the functional character of T cell immunity. Recently, single-cell technologies have gained in popularity due to improvements in throughput, decrease in cost and the ability for multimodal experiments that integrate different information layers. Consequently, this prompts the need for the development of novel computational tools that integrate transcriptomic profiles and corresponding features of the TCR repertoire. Here we discuss the current progress in the field of single-cell T cell sequencing, with a focus on the multimodality of new approaches that allow the paired profiling of cellular phenotype and clonotype information. In addition, this review provides detailed descriptions of recent computational developments for analyzing single-cell TCR sequencing data in an integrative manner using novel computational approaches. Finally, we present an overview of the available software tools that can be used to perform integrative analysis of gene expression and TCR profiles.</p></div>","PeriodicalId":73343,"journal":{"name":"Immunoinformatics (Amsterdam, Netherlands)","volume":"5 ","pages":"Article 100009"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667119022000015/pdfft?md5=e87c5318f3f2c272c5efee686fd3aa55&pid=1-s2.0-S2667119022000015-main.pdf","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunoinformatics (Amsterdam, Netherlands)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667119022000015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

T cells exercise a multitude of functions such as cytotoxicity, secretion of immunomodulating cytokines or regulation of tolerance, collectively resulting in an effective control of immune-related disease. Through the unique mechanism of V(D)J recombination, T cells express a highly specific receptor complex known as the T-cell receptor (TCR). Single-cell sequencing technologies have paved the road for interrogating the transcriptome and the paired αβ TCR repertoire of a single T cell in tandem. In contrast, conventional bulk methods are restricted to only one layer of information. This combination of transcriptomic- and repertoire information can provide novel insight into the functional character of T cell immunity. Recently, single-cell technologies have gained in popularity due to improvements in throughput, decrease in cost and the ability for multimodal experiments that integrate different information layers. Consequently, this prompts the need for the development of novel computational tools that integrate transcriptomic profiles and corresponding features of the TCR repertoire. Here we discuss the current progress in the field of single-cell T cell sequencing, with a focus on the multimodality of new approaches that allow the paired profiling of cellular phenotype and clonotype information. In addition, this review provides detailed descriptions of recent computational developments for analyzing single-cell TCR sequencing data in an integrative manner using novel computational approaches. Finally, we present an overview of the available software tools that can be used to perform integrative analysis of gene expression and TCR profiles.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
t细胞受体库分析的最新进展:弥合与多模态单细胞RNA测序的差距
T细胞行使多种功能,如细胞毒性,分泌免疫调节细胞因子或调节耐受性,共同导致免疫相关疾病的有效控制。通过独特的V(D)J重组机制,T细胞表达一种高度特异性的受体复合物,称为T细胞受体(TCR)。单细胞测序技术为查询单个T细胞的转录组和配对αβ TCR库铺平了道路。相比之下,传统的批量方法仅限于一层信息。这种转录组学和库信息的结合可以为T细胞免疫的功能特征提供新的见解。最近,由于吞吐量的提高、成本的降低以及集成不同信息层的多模态实验的能力,单细胞技术得到了普及。因此,这提示需要开发新的计算工具,以整合转录组谱和TCR库的相应特征。在这里,我们讨论了单细胞T细胞测序领域的当前进展,重点是允许细胞表型和克隆型信息配对分析的新方法的多模态。此外,本文还详细介绍了利用新颖的计算方法综合分析单细胞TCR测序数据的最新计算进展。最后,我们概述了可用的软件工具,可用于执行基因表达和TCR谱的综合分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Immunoinformatics (Amsterdam, Netherlands)
Immunoinformatics (Amsterdam, Netherlands) Immunology, Computer Science Applications
自引率
0.00%
发文量
0
审稿时长
60 days
期刊最新文献
Scifer: An R/Bioconductor package for large-scale integration of Sanger sequencing and flow cytometry data of index-sorted single cells Lessons learned from the IMMREP23 TCR-epitope prediction challenge Multicohort analysis identifies conserved transcriptional interactions between humans and Plasmodium falciparum In silico modelling of CD8 T cell immune response links genetic regulation to population dynamics Data mining antibody sequences for database searching in bottom-up proteomics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1