Nathaniel DeVol, Christopher Saldaña, Katherine Fu
{"title":"Methods for the Automated Determination of Sustained Maximum Amplitudes in Oscillating Signals","authors":"Nathaniel DeVol, Christopher Saldaña, Katherine Fu","doi":"10.1115/1.4063130","DOIUrl":null,"url":null,"abstract":"\n Machine condition monitoring has been proven to reduce machine down time and increase productivity. State of the art research uses vibration monitoring for tasks such as maintenance and tool wear prediction. A less explored aspect is how vibration monitoring might be used to monitor equipment sensitive to vibration. In a manufacturing environment, one example of where this might be needed is in monitoring the vibration of optical linear encoders used in high precision machine tools and coordinate measuring machines. Monitoring the vibration of sensitive equipment presents a unique case for vibration monitoring because an accurate calculation of the maximum sustained vibration is needed, as opposed to extracting trends from the data. To do this, techniques for determining sustained peaks in vibration signals are needed. This work fills this gap by formalizing and testing methods for determining sustained vibration amplitudes. The methods are tested on simulated signals based on experimental data. Results show that processing the signal directly with the novel Expire Timer method produces the smallest amounts of error on average under various test conditions. Additionally, this method can operate in real-time on streaming vibration data.","PeriodicalId":54856,"journal":{"name":"Journal of Computing and Information Science in Engineering","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computing and Information Science in Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4063130","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Machine condition monitoring has been proven to reduce machine down time and increase productivity. State of the art research uses vibration monitoring for tasks such as maintenance and tool wear prediction. A less explored aspect is how vibration monitoring might be used to monitor equipment sensitive to vibration. In a manufacturing environment, one example of where this might be needed is in monitoring the vibration of optical linear encoders used in high precision machine tools and coordinate measuring machines. Monitoring the vibration of sensitive equipment presents a unique case for vibration monitoring because an accurate calculation of the maximum sustained vibration is needed, as opposed to extracting trends from the data. To do this, techniques for determining sustained peaks in vibration signals are needed. This work fills this gap by formalizing and testing methods for determining sustained vibration amplitudes. The methods are tested on simulated signals based on experimental data. Results show that processing the signal directly with the novel Expire Timer method produces the smallest amounts of error on average under various test conditions. Additionally, this method can operate in real-time on streaming vibration data.
期刊介绍:
The ASME Journal of Computing and Information Science in Engineering (JCISE) publishes articles related to Algorithms, Computational Methods, Computing Infrastructure, Computer-Interpretable Representations, Human-Computer Interfaces, Information Science, and/or System Architectures that aim to improve some aspect of product and system lifecycle (e.g., design, manufacturing, operation, maintenance, disposal, recycling etc.). Applications considered in JCISE manuscripts should be relevant to the mechanical engineering discipline. Papers can be focused on fundamental research leading to new methods, or adaptation of existing methods for new applications.
Scope: Advanced Computing Infrastructure; Artificial Intelligence; Big Data and Analytics; Collaborative Design; Computer Aided Design; Computer Aided Engineering; Computer Aided Manufacturing; Computational Foundations for Additive Manufacturing; Computational Foundations for Engineering Optimization; Computational Geometry; Computational Metrology; Computational Synthesis; Conceptual Design; Cybermanufacturing; Cyber Physical Security for Factories; Cyber Physical System Design and Operation; Data-Driven Engineering Applications; Engineering Informatics; Geometric Reasoning; GPU Computing for Design and Manufacturing; Human Computer Interfaces/Interactions; Industrial Internet of Things; Knowledge Engineering; Information Management; Inverse Methods for Engineering Applications; Machine Learning for Engineering Applications; Manufacturing Planning; Manufacturing Automation; Model-based Systems Engineering; Multiphysics Modeling and Simulation; Multiscale Modeling and Simulation; Multidisciplinary Optimization; Physics-Based Simulations; Process Modeling for Engineering Applications; Qualification, Verification and Validation of Computational Models; Symbolic Computing for Engineering Applications; Tolerance Modeling; Topology and Shape Optimization; Virtual and Augmented Reality Environments; Virtual Prototyping