{"title":"A multi-sensor based emergency healthcare monitoring system integrating heart status, stress, and alcohol detections","authors":"Karandeep Kaur, H. Verma","doi":"10.1108/sr-03-2022-0136","DOIUrl":null,"url":null,"abstract":"\nPurpose\nUbiquitous health-care monitoring systems can provide continuous surveillance to a person using various sensors, including wearables and implantable and fabric-woven sensors. By assessing the state of many physiological characteristics of the patient’s body, continuous monitoring can assist in preparing for the impending emergency. To address this issue, this study aims to propose a health-care system that integrates the treatment of the impending heart, stress and alcohol emergencies. For this purpose, this study uses readings from sensors used for electrocardiography, heart rate, respiration rate, blood alcohol content percentage and blood pressure of a patient’s body.\n\n\nDesign/methodology/approach\nFor heart status, stress level and alcohol detection, the parametric values obtained from these sensors are preprocessed and further divided into four, five and six phases, respectively. A final integrated emergency stage is derived from the stages that were interpreted to examine at a person’s state of emergency. A thorough analysis of the proposed model is carried out using four classification techniques, including decision trees, support vector machines, k nearest neighbors and ensemble classifiers. For all of the aforementioned detections, four metrics are used to evaluate performance: classification accuracy, precision, recall and fmeasure.\n\n\nFindings\nEventually, results are validated against the existing health-care systems. The empirical results received reveal that the proposed model outperforms the existing health-care models in the context of metrics above for different detections taken into consideration.\n\n\nOriginality/value\nThis study proposes a health-care system capable of performing data processing using wearable sensors. It is of great importance for real-time systems. This study assures the originality of the proposed system.\n","PeriodicalId":49540,"journal":{"name":"Sensor Review","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensor Review","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/sr-03-2022-0136","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
Ubiquitous health-care monitoring systems can provide continuous surveillance to a person using various sensors, including wearables and implantable and fabric-woven sensors. By assessing the state of many physiological characteristics of the patient’s body, continuous monitoring can assist in preparing for the impending emergency. To address this issue, this study aims to propose a health-care system that integrates the treatment of the impending heart, stress and alcohol emergencies. For this purpose, this study uses readings from sensors used for electrocardiography, heart rate, respiration rate, blood alcohol content percentage and blood pressure of a patient’s body.
Design/methodology/approach
For heart status, stress level and alcohol detection, the parametric values obtained from these sensors are preprocessed and further divided into four, five and six phases, respectively. A final integrated emergency stage is derived from the stages that were interpreted to examine at a person’s state of emergency. A thorough analysis of the proposed model is carried out using four classification techniques, including decision trees, support vector machines, k nearest neighbors and ensemble classifiers. For all of the aforementioned detections, four metrics are used to evaluate performance: classification accuracy, precision, recall and fmeasure.
Findings
Eventually, results are validated against the existing health-care systems. The empirical results received reveal that the proposed model outperforms the existing health-care models in the context of metrics above for different detections taken into consideration.
Originality/value
This study proposes a health-care system capable of performing data processing using wearable sensors. It is of great importance for real-time systems. This study assures the originality of the proposed system.
期刊介绍:
Sensor Review publishes peer reviewed state-of-the-art articles and specially commissioned technology reviews. Each issue of this multidisciplinary journal includes high quality original content covering all aspects of sensors and their applications, and reflecting the most interesting and strategically important research and development activities from around the world. Because of this, readers can stay at the very forefront of high technology sensor developments.
Emphasis is placed on detailed independent regular and review articles identifying the full range of sensors currently available for specific applications, as well as highlighting those areas of technology showing great potential for the future. The journal encourages authors to consider the practical and social implications of their articles.
All articles undergo a rigorous double-blind peer review process which involves an initial assessment of suitability of an article for the journal followed by sending it to, at least two reviewers in the field if deemed suitable.
Sensor Review’s coverage includes, but is not restricted to:
Mechanical sensors – position, displacement, proximity, velocity, acceleration, vibration, force, torque, pressure, and flow sensors
Electric and magnetic sensors – resistance, inductive, capacitive, piezoelectric, eddy-current, electromagnetic, photoelectric, and thermoelectric sensors
Temperature sensors, infrared sensors, humidity sensors
Optical, electro-optical and fibre-optic sensors and systems, photonic sensors
Biosensors, wearable and implantable sensors and systems, immunosensors
Gas and chemical sensors and systems, polymer sensors
Acoustic and ultrasonic sensors
Haptic sensors and devices
Smart and intelligent sensors and systems
Nanosensors, NEMS, MEMS, and BioMEMS
Quantum sensors
Sensor systems: sensor data fusion, signals, processing and interfacing, signal conditioning.