From passive to emerging smart silicones

IF 4.9 3区 工程技术 Q1 ENGINEERING, CHEMICAL Reviews in Chemical Engineering Pub Date : 2022-06-22 DOI:10.1515/revce-2021-0089
M. Cazacu, Mihaela Dascalu, G. Stiubianu, A. Bele, C. Tugui, C. Racles
{"title":"From passive to emerging smart silicones","authors":"M. Cazacu, Mihaela Dascalu, G. Stiubianu, A. Bele, C. Tugui, C. Racles","doi":"10.1515/revce-2021-0089","DOIUrl":null,"url":null,"abstract":"Abstract Amassing remarkable properties, silicones are practically indispensable in our everyday life. In most classic applications, they play a passive role in that they cover, seal, insulate, lubricate, water-proof, weather-proof etc. However, silicone science and engineering are highly innovative, seeking to develop new compounds and materials that meet market demands. Thus, the unusual properties of silicones, coupled with chemical group functionalization, has allowed silicones to gradually evolve from passive materials to active ones, meeting the concept of “smart materials”, which are able to respond to external stimuli. In such cases, the intrinsic properties of polysiloxanes are augmented by various chemical modifications aiming to attach reactive or functional groups, and/or by engineering through proper cross-linking pattern or loading with suitable fillers (ceramic, magnetic, highly dielectric or electrically conductive materials, biologically active, etc.), to add new capabilities and develop high value materials. The literature and own data reflecting the state-of-the art in the field of smart silicones, such as thermoplasticity, self-healing ability, surface activity, electromechanical activity and magnetostriction, thermo-, photo-, and piezoresponsivity are reviewed.","PeriodicalId":54485,"journal":{"name":"Reviews in Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/revce-2021-0089","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 5

Abstract

Abstract Amassing remarkable properties, silicones are practically indispensable in our everyday life. In most classic applications, they play a passive role in that they cover, seal, insulate, lubricate, water-proof, weather-proof etc. However, silicone science and engineering are highly innovative, seeking to develop new compounds and materials that meet market demands. Thus, the unusual properties of silicones, coupled with chemical group functionalization, has allowed silicones to gradually evolve from passive materials to active ones, meeting the concept of “smart materials”, which are able to respond to external stimuli. In such cases, the intrinsic properties of polysiloxanes are augmented by various chemical modifications aiming to attach reactive or functional groups, and/or by engineering through proper cross-linking pattern or loading with suitable fillers (ceramic, magnetic, highly dielectric or electrically conductive materials, biologically active, etc.), to add new capabilities and develop high value materials. The literature and own data reflecting the state-of-the art in the field of smart silicones, such as thermoplasticity, self-healing ability, surface activity, electromechanical activity and magnetostriction, thermo-, photo-, and piezoresponsivity are reviewed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从被动有机硅到新兴智能有机硅
摘要硅酮具有卓越的性能,在我们的日常生活中几乎是必不可少的。在大多数经典应用中,它们起着被动的作用,因为它们覆盖、密封、绝缘、润滑、防水、耐候等。然而,有机硅科学和工程具有高度创新性,寻求开发满足市场需求的新化合物和材料。因此,硅酮的不同寻常的性质,加上化学基团功能化,使硅酮逐渐从被动材料进化为主动材料,符合“智能材料”的概念,能够对外部刺激做出反应。在这种情况下,聚硅氧烷的固有性质通过旨在连接反应性或官能团的各种化学修饰来增强,和/或通过适当的交联模式或用合适的填料(陶瓷、磁性、高介电或导电材料、生物活性等)进行工程来增强,以增加新功能并开发高价值材料。综述了反映智能硅酮领域技术现状的文献和数据,如热塑性、自修复能力、表面活性、机电活性和磁致伸缩性、热响应性、光响应性和压电响应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Reviews in Chemical Engineering
Reviews in Chemical Engineering 工程技术-工程:化工
CiteScore
12.30
自引率
0.00%
发文量
37
审稿时长
6 months
期刊介绍: Reviews in Chemical Engineering publishes authoritative review articles on all aspects of the broad field of chemical engineering and applied chemistry. Its aim is to develop new insights and understanding and to promote interest and research activity in chemical engineering, as well as the application of new developments in these areas. The bimonthly journal publishes peer-reviewed articles by leading chemical engineers, applied scientists and mathematicians. The broad interest today in solutions through chemistry to some of the world’s most challenging problems ensures that Reviews in Chemical Engineering will play a significant role in the growth of the field as a whole.
期刊最新文献
Lithium–sulfur batteries beyond lithium-ion counterparts: reasonable substituting challenges, current research focus, binding critical role, and cathode designing A review of confined impinging jet reactor (CIJR) with a perspective of mRNA-LNP vaccine production Metal nanoparticles loaded polyurethane nano-composites and their catalytic/antimicrobial applications: a critical review Analysis of the state of the art technologies for the utilization and processing of associated petroleum gas into valuable chemical products A decade development of lipase catalysed synthesis of acylglycerols using reactors: a systematic review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1