{"title":"CAGAN: Classifier-augmented generative adversarial networks for weakly-supervised COVID-19 lung lesion localisation","authors":"Xiaojie Li, Xin Fei, Zhe Yan, Hongping Ren, Canghong Shi, Xian Zhang, Imran Mumtaz, Yong Luo, Xi Wu","doi":"10.1049/cvi2.12216","DOIUrl":null,"url":null,"abstract":"<p>The Coronavirus Disease 2019 (COVID-19) epidemic has constituted a Public Health Emergency of International Concern. Chest computed tomography (CT) can help early reveal abnormalities indicative of lung disease. Thus, accurate and automatic localisation of lung lesions is particularly important to assist physicians in rapid diagnosis of COVID-19 patients. The authors propose a classifier-augmented generative adversarial network framework for weakly supervised COVID-19 lung lesion localisation. It consists of an abnormality map generator, discriminator and classifier. The generator aims to produce the abnormality feature map <i>M</i> to locate lesion regions and then constructs images of the pseudo-healthy subjects by adding <i>M</i> to the input patient images. Besides constraining the generated images of healthy subjects with real distribution by the discriminator, a pre-trained classifier is introduced to enhance the generated images of healthy subjects to possess similar feature representations with real healthy people in terms of high-level semantic features. Moreover, an attention gate is employed in the generator to reduce the noise effect in the irrelevant regions of <i>M</i>. Experimental results on the COVID-19 CT dataset show that the method is effective in capturing more lesion areas and generating less noise in unrelated areas, and it has significant advantages in terms of quantitative and qualitative results over existing methods.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"18 1","pages":"1-14"},"PeriodicalIF":1.5000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12216","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12216","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The Coronavirus Disease 2019 (COVID-19) epidemic has constituted a Public Health Emergency of International Concern. Chest computed tomography (CT) can help early reveal abnormalities indicative of lung disease. Thus, accurate and automatic localisation of lung lesions is particularly important to assist physicians in rapid diagnosis of COVID-19 patients. The authors propose a classifier-augmented generative adversarial network framework for weakly supervised COVID-19 lung lesion localisation. It consists of an abnormality map generator, discriminator and classifier. The generator aims to produce the abnormality feature map M to locate lesion regions and then constructs images of the pseudo-healthy subjects by adding M to the input patient images. Besides constraining the generated images of healthy subjects with real distribution by the discriminator, a pre-trained classifier is introduced to enhance the generated images of healthy subjects to possess similar feature representations with real healthy people in terms of high-level semantic features. Moreover, an attention gate is employed in the generator to reduce the noise effect in the irrelevant regions of M. Experimental results on the COVID-19 CT dataset show that the method is effective in capturing more lesion areas and generating less noise in unrelated areas, and it has significant advantages in terms of quantitative and qualitative results over existing methods.
期刊介绍:
IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision.
IET Computer Vision welcomes submissions on the following topics:
Biologically and perceptually motivated approaches to low level vision (feature detection, etc.);
Perceptual grouping and organisation
Representation, analysis and matching of 2D and 3D shape
Shape-from-X
Object recognition
Image understanding
Learning with visual inputs
Motion analysis and object tracking
Multiview scene analysis
Cognitive approaches in low, mid and high level vision
Control in visual systems
Colour, reflectance and light
Statistical and probabilistic models
Face and gesture
Surveillance
Biometrics and security
Robotics
Vehicle guidance
Automatic model aquisition
Medical image analysis and understanding
Aerial scene analysis and remote sensing
Deep learning models in computer vision
Both methodological and applications orientated papers are welcome.
Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review.
Special Issues Current Call for Papers:
Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf
Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf