{"title":"Application of SCADA data in wind turbine fault detection – a review","authors":"Junyan Ma, Yiping Yuan","doi":"10.1108/sr-06-2022-0255","DOIUrl":null,"url":null,"abstract":"\nPurpose\nWith the rapid increase in the number of installed wind turbines (WTs) worldwide, requirements and expenses of maintenance have also increased significantly. The condition monitoring (CM) of WT provides a strong “soft guarantee” for preventive maintenance. The supervisory control and data acquisition (SCADA) system records a huge amount of condition data, which has become an effective means of CM. The main objective of the present study is to summarize the application of SCADA data to fault detection in wind turbines, analyze its advantages and disadvantages and predict the potential of future investigations on the use of SCADA data for fault detection.\n\n\nDesign/methodology/approach\nThe authors first review the means of WT CM and summarize the characteristics of CM based on SCADA data. To ensure the quality of SCADA data, data preprocessing methods are analyzed and compared. Then, the failure modes of the key components are discussed and the SCADA data used for fault detection of each component are compared. Moreover, the fault detection methods for WT are classified and a general framework for fault detection is proposed. Finally, the issues in the WT fault detection method based on SCADA data are reviewed.\n\n\nFindings\nBased on the performed analyses, it is found that although the fault detection accuracy based on SCADA data is relatively poor, it has low capital expenses and low computational cost. More specifically, when there is scarce fault data, the normal SCADA data can be used to detect the fault time. However, the specific fault type cannot be identified in this way. When a large amount of fault data are accumulated in the SCADA system, it can not only detect the occurrence time of the fault but also identify the specific fault type.\n\n\nOriginality/value\nThe main contribution of the present study is to summarize the pre-processing methods for SCADA data, the data required for fault detection of key components and the characteristics of the fault detection model. Then we propose a general fault detection framework for wind turbines based on SCADA data, where the maintenance workers can choose the appropriate fault detection method according to different fault detection requirements and data resources. This article is expected to provide guidance for fault detection based on time-series sensor signals and be of interest to researchers, maintenance workers and managers.\n","PeriodicalId":49540,"journal":{"name":"Sensor Review","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensor Review","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/sr-06-2022-0255","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 1
Abstract
Purpose
With the rapid increase in the number of installed wind turbines (WTs) worldwide, requirements and expenses of maintenance have also increased significantly. The condition monitoring (CM) of WT provides a strong “soft guarantee” for preventive maintenance. The supervisory control and data acquisition (SCADA) system records a huge amount of condition data, which has become an effective means of CM. The main objective of the present study is to summarize the application of SCADA data to fault detection in wind turbines, analyze its advantages and disadvantages and predict the potential of future investigations on the use of SCADA data for fault detection.
Design/methodology/approach
The authors first review the means of WT CM and summarize the characteristics of CM based on SCADA data. To ensure the quality of SCADA data, data preprocessing methods are analyzed and compared. Then, the failure modes of the key components are discussed and the SCADA data used for fault detection of each component are compared. Moreover, the fault detection methods for WT are classified and a general framework for fault detection is proposed. Finally, the issues in the WT fault detection method based on SCADA data are reviewed.
Findings
Based on the performed analyses, it is found that although the fault detection accuracy based on SCADA data is relatively poor, it has low capital expenses and low computational cost. More specifically, when there is scarce fault data, the normal SCADA data can be used to detect the fault time. However, the specific fault type cannot be identified in this way. When a large amount of fault data are accumulated in the SCADA system, it can not only detect the occurrence time of the fault but also identify the specific fault type.
Originality/value
The main contribution of the present study is to summarize the pre-processing methods for SCADA data, the data required for fault detection of key components and the characteristics of the fault detection model. Then we propose a general fault detection framework for wind turbines based on SCADA data, where the maintenance workers can choose the appropriate fault detection method according to different fault detection requirements and data resources. This article is expected to provide guidance for fault detection based on time-series sensor signals and be of interest to researchers, maintenance workers and managers.
期刊介绍:
Sensor Review publishes peer reviewed state-of-the-art articles and specially commissioned technology reviews. Each issue of this multidisciplinary journal includes high quality original content covering all aspects of sensors and their applications, and reflecting the most interesting and strategically important research and development activities from around the world. Because of this, readers can stay at the very forefront of high technology sensor developments.
Emphasis is placed on detailed independent regular and review articles identifying the full range of sensors currently available for specific applications, as well as highlighting those areas of technology showing great potential for the future. The journal encourages authors to consider the practical and social implications of their articles.
All articles undergo a rigorous double-blind peer review process which involves an initial assessment of suitability of an article for the journal followed by sending it to, at least two reviewers in the field if deemed suitable.
Sensor Review’s coverage includes, but is not restricted to:
Mechanical sensors – position, displacement, proximity, velocity, acceleration, vibration, force, torque, pressure, and flow sensors
Electric and magnetic sensors – resistance, inductive, capacitive, piezoelectric, eddy-current, electromagnetic, photoelectric, and thermoelectric sensors
Temperature sensors, infrared sensors, humidity sensors
Optical, electro-optical and fibre-optic sensors and systems, photonic sensors
Biosensors, wearable and implantable sensors and systems, immunosensors
Gas and chemical sensors and systems, polymer sensors
Acoustic and ultrasonic sensors
Haptic sensors and devices
Smart and intelligent sensors and systems
Nanosensors, NEMS, MEMS, and BioMEMS
Quantum sensors
Sensor systems: sensor data fusion, signals, processing and interfacing, signal conditioning.