Development of an ultrasonic linear encoder

IF 1.6 4区 工程技术 Q3 INSTRUMENTS & INSTRUMENTATION Sensor Review Pub Date : 2023-05-05 DOI:10.1108/sr-07-2022-0262
Chung-Ping Chang, Song-Fu Hong, Tzu-Guang Chen
{"title":"Development of an ultrasonic linear encoder","authors":"Chung-Ping Chang, Song-Fu Hong, Tzu-Guang Chen","doi":"10.1108/sr-07-2022-0262","DOIUrl":null,"url":null,"abstract":"\nPurpose\nIn this investigation, a linear encoder system based on the ultrasonic transducer has been proposed. Ultrasonic transducers are usually designed for distance measurements, such as the time of flight method and sonar system. These applications are defined as discrete-length measurement technologies. The purpose of this study is to develop a continuous displacement measurement system using ultrasonic transducers.\n\n\nDesign/methodology/approach\nA modified signal processing based on heterodyne signaling is implemented in this system. In the proposed signal processing, there is an automatic gain control module, a phase-shifting module, a phase detection module, an interpolation module and especially a frequency multiplication module, which can enhance the resolution and reduce the interpolation error simultaneously.\n\n\nFindings\nThe proposed system can generate the encoding signals and is compatible with most motion control systems. For the experimental result, the maximum measurement error and standard deviation are about −0.027 and 0.048 mm, respectively. It shows that the proposed encoder system has the potential for displacement measurement tasks.\n\n\nOriginality/value\nThis study reveals an ultrasonic linear encoder that is capable of generating an incremental encoding signal, accompanied by a corresponding signal processing methodology. In contrast to the conventional heterodyne signal processing approach, the proposed multiplication method effectively reduces the interpolation error that arises because of multiple reflections.\n","PeriodicalId":49540,"journal":{"name":"Sensor Review","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensor Review","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/sr-07-2022-0262","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 1

Abstract

Purpose In this investigation, a linear encoder system based on the ultrasonic transducer has been proposed. Ultrasonic transducers are usually designed for distance measurements, such as the time of flight method and sonar system. These applications are defined as discrete-length measurement technologies. The purpose of this study is to develop a continuous displacement measurement system using ultrasonic transducers. Design/methodology/approach A modified signal processing based on heterodyne signaling is implemented in this system. In the proposed signal processing, there is an automatic gain control module, a phase-shifting module, a phase detection module, an interpolation module and especially a frequency multiplication module, which can enhance the resolution and reduce the interpolation error simultaneously. Findings The proposed system can generate the encoding signals and is compatible with most motion control systems. For the experimental result, the maximum measurement error and standard deviation are about −0.027 and 0.048 mm, respectively. It shows that the proposed encoder system has the potential for displacement measurement tasks. Originality/value This study reveals an ultrasonic linear encoder that is capable of generating an incremental encoding signal, accompanied by a corresponding signal processing methodology. In contrast to the conventional heterodyne signal processing approach, the proposed multiplication method effectively reduces the interpolation error that arises because of multiple reflections.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超声线性编码器的研制
目的提出了一种基于超声换能器的线性编码器系统。超声波换能器通常设计用于距离测量,如飞行时间法和声纳系统。这些应用被定义为离散长度测量技术。本研究的目的是开发一种利用超声波换能器的连续位移测量系统。该系统实现了一种基于外差信号的改进信号处理方法。在所提出的信号处理中,有自动增益控制模块、移相模块、相位检测模块、插补模块,尤其是乘频模块,可以在提高分辨率的同时减小插补误差。研究结果:该系统能够生成编码信号,并与大多数运动控制系统兼容。实验结果的最大测量误差和标准偏差分别约为- 0.027和0.048 mm。结果表明,该编码器系统具有实现位移测量任务的潜力。原创性/价值本研究揭示了一种超声线性编码器,该编码器能够产生增量编码信号,并伴有相应的信号处理方法。与传统的外差信号处理方法相比,该方法有效地降低了由于多次反射而产生的插值误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Sensor Review
Sensor Review 工程技术-仪器仪表
CiteScore
3.40
自引率
6.20%
发文量
50
审稿时长
3.7 months
期刊介绍: Sensor Review publishes peer reviewed state-of-the-art articles and specially commissioned technology reviews. Each issue of this multidisciplinary journal includes high quality original content covering all aspects of sensors and their applications, and reflecting the most interesting and strategically important research and development activities from around the world. Because of this, readers can stay at the very forefront of high technology sensor developments. Emphasis is placed on detailed independent regular and review articles identifying the full range of sensors currently available for specific applications, as well as highlighting those areas of technology showing great potential for the future. The journal encourages authors to consider the practical and social implications of their articles. All articles undergo a rigorous double-blind peer review process which involves an initial assessment of suitability of an article for the journal followed by sending it to, at least two reviewers in the field if deemed suitable. Sensor Review’s coverage includes, but is not restricted to: Mechanical sensors – position, displacement, proximity, velocity, acceleration, vibration, force, torque, pressure, and flow sensors Electric and magnetic sensors – resistance, inductive, capacitive, piezoelectric, eddy-current, electromagnetic, photoelectric, and thermoelectric sensors Temperature sensors, infrared sensors, humidity sensors Optical, electro-optical and fibre-optic sensors and systems, photonic sensors Biosensors, wearable and implantable sensors and systems, immunosensors Gas and chemical sensors and systems, polymer sensors Acoustic and ultrasonic sensors Haptic sensors and devices Smart and intelligent sensors and systems Nanosensors, NEMS, MEMS, and BioMEMS Quantum sensors Sensor systems: sensor data fusion, signals, processing and interfacing, signal conditioning.
期刊最新文献
Multi-sensor integration on one microfluidics chip for single-stranded DNA detection Advances in drift compensation algorithms for electronic nose technology A novel Au-NPs/DBTTA nanocomposite-based electrochemical sensor for the detection of ascorbic acid (AA) A step length estimation method based on frequency domain feature analysis and gait recognition for pedestrian dead reckoning Liquid viscosity measurement based on disk-shaped electromechanical resonator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1