María Rodríguez Martínez , Matteo Barberis , Anna Niarakis
{"title":"Computational modelling of immunological mechanisms: From statistical approaches to interpretable machine learning","authors":"María Rodríguez Martínez , Matteo Barberis , Anna Niarakis","doi":"10.1016/j.immuno.2023.100029","DOIUrl":null,"url":null,"abstract":"<div><p>The immune system is highly complex, and its malfunctioning can result in many complex disorders. Understanding its inner workings is crucial to designing optimal immunotherapies, developing new vaccines, or understanding autoimmune diseases, just to name a few. Immune-related diseases present unique challenges due to our limited understanding of the complex molecular and cellular interactions involved, as well as the scarcity of available therapeutic options. Recent years have witnessed the progressive development of high-throughput experimental technologies to probe the immune system. This large amount of data has facilitated the emergence of statistical and machine-learning models focused on unravelling the intricate complexities of the immune system. With this vision in mind, a workshop titled \"Computational modelling of immunological mechanisms: From statistical approaches to interpretable machine learning\" was organized on Sunday, September 18th, 2022 at the 21st European Conference on Computational Biology (ECCB) in Sitges, Spain. The workshop, led by María Rodríguez Martínez, Anna Niarakis, and Matteo Barberis, explored recent statistical models, high-throughput data analyses, and machine learning models to understand immunological mechanisms. More than 60 participants attended the workshop, comprising students, early-career and senior researchers, as well as professionals from diverse domains including Immunology, Systems Biology, Computational Biology, Computer Science, and Bioinformatics. To conclude the workshop, a round table was organized to foster discussions on the existing challenges and chart a roadmap for the development of the next generation of computational models dedicated to investigating the cellular and molecular functions that underlie the immune system.</p></div>","PeriodicalId":73343,"journal":{"name":"Immunoinformatics (Amsterdam, Netherlands)","volume":"12 ","pages":"Article 100029"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667119023000095/pdfft?md5=1bd294dd942e97f1e67d4a8e7ca5da39&pid=1-s2.0-S2667119023000095-main.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunoinformatics (Amsterdam, Netherlands)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667119023000095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The immune system is highly complex, and its malfunctioning can result in many complex disorders. Understanding its inner workings is crucial to designing optimal immunotherapies, developing new vaccines, or understanding autoimmune diseases, just to name a few. Immune-related diseases present unique challenges due to our limited understanding of the complex molecular and cellular interactions involved, as well as the scarcity of available therapeutic options. Recent years have witnessed the progressive development of high-throughput experimental technologies to probe the immune system. This large amount of data has facilitated the emergence of statistical and machine-learning models focused on unravelling the intricate complexities of the immune system. With this vision in mind, a workshop titled "Computational modelling of immunological mechanisms: From statistical approaches to interpretable machine learning" was organized on Sunday, September 18th, 2022 at the 21st European Conference on Computational Biology (ECCB) in Sitges, Spain. The workshop, led by María Rodríguez Martínez, Anna Niarakis, and Matteo Barberis, explored recent statistical models, high-throughput data analyses, and machine learning models to understand immunological mechanisms. More than 60 participants attended the workshop, comprising students, early-career and senior researchers, as well as professionals from diverse domains including Immunology, Systems Biology, Computational Biology, Computer Science, and Bioinformatics. To conclude the workshop, a round table was organized to foster discussions on the existing challenges and chart a roadmap for the development of the next generation of computational models dedicated to investigating the cellular and molecular functions that underlie the immune system.