{"title":"QCA Based Design of Novel Low Power n-bit Ripple Carry Incrementer and Ripple Carry Decrementer","authors":"J. Das, B. Debnath, D. De","doi":"10.1142/s1793292023500698","DOIUrl":null,"url":null,"abstract":"This paper shows the design of the newly made ‘n’ bit incrementer and decrementer circuit using quantum-dot cellular automata (QCA). Ripple carry incrementer and decrementer are crucial for performing two numbers’ increment or decrement operation. This paper outlines the design of a novel low power ripple carry incrementer and ripple carry decrementer circuit based on QCA. The proposed ripple carry incrementer and ripple carry decrementer circuit are achieved with a new layout of the XOR gate, AND gate, and half adder circuit. This newly designed XOR and half adderare compared with state-of-the-artdesigns.QCA Designer 2.0.3 is used to design the circuits. The simulation results of 4-bit, 8-bit, and 16-bit incrementer and decrementer circuits are by the theoretical results.","PeriodicalId":18978,"journal":{"name":"Nano","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1142/s1793292023500698","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper shows the design of the newly made ‘n’ bit incrementer and decrementer circuit using quantum-dot cellular automata (QCA). Ripple carry incrementer and decrementer are crucial for performing two numbers’ increment or decrement operation. This paper outlines the design of a novel low power ripple carry incrementer and ripple carry decrementer circuit based on QCA. The proposed ripple carry incrementer and ripple carry decrementer circuit are achieved with a new layout of the XOR gate, AND gate, and half adder circuit. This newly designed XOR and half adderare compared with state-of-the-artdesigns.QCA Designer 2.0.3 is used to design the circuits. The simulation results of 4-bit, 8-bit, and 16-bit incrementer and decrementer circuits are by the theoretical results.
期刊介绍:
NANO is an international peer-reviewed monthly journal for nanoscience and nanotechnology that presents forefront fundamental research and new emerging topics. It features timely scientific reports of new results and technical breakthroughs and also contains interesting review articles about recent hot issues.
NANO provides an ideal forum for presenting original reports of theoretical and experimental nanoscience and nanotechnology research. Research areas of interest include: nanomaterials including nano-related biomaterials, new phenomena and newly developed characterization tools, fabrication methods including by self-assembly, device applications, and numerical simulation, modeling, and theory. However, in light of the current stage development of nanoscience, manuscripts on numerical simulation, modeling, and/or theory only without experimental evidences are considered as not pertinent to the scope of NANO.