Implementasi Deep Learning Untuk Rekomendasi Aplikasi E-learning Yang Tepat Untuk Pembelajaran jarak jauh

Wowon Priatna, Rakhmat Purnomo, Tri Dharma Putra
{"title":"Implementasi Deep Learning Untuk Rekomendasi Aplikasi E-learning Yang Tepat Untuk Pembelajaran jarak jauh","authors":"Wowon Priatna, Rakhmat Purnomo, Tri Dharma Putra","doi":"10.31599/jki.v21i3.521","DOIUrl":null,"url":null,"abstract":"The purpose of this study is to recommend e-learning applications that are appropriate for use in online learning in college environments. The large number of e-learning platforms used by lecturers for online lecture activities results in students being forced to use several e-learning applications depending on the lecturer who teaches the courses taken, for the university also finally gives lecturers policies for distance learning reports each finished giving the material. In this study the data collection method began by taking data from the faculty to find out which e-learning applications were widely used by lecturers, then distributing questionnaires to students and lecturers who used the e-learning application to measure the e-leaning application with the e-learning criteria. Appropriate. The data is then processed into a dataset. The algorithm used in implementing deep learning is Artificial Neural Network (ANN). For the implementation of ANN, 27 variables were determined from the e-learning criteria and 1 target. In this ANN stage, prediction was used with classifications based on preparation, training, learning, evaluation and prediction using the python programming. The results obtained in this study that the Moodle application gets the highest score with an accuracy of 97% to be used as a recommendation for e-learning applications that are appropriate for universities to conduct online lectures.","PeriodicalId":32166,"journal":{"name":"Jurnal Kajian Ilmiah","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Kajian Ilmiah","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31599/jki.v21i3.521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The purpose of this study is to recommend e-learning applications that are appropriate for use in online learning in college environments. The large number of e-learning platforms used by lecturers for online lecture activities results in students being forced to use several e-learning applications depending on the lecturer who teaches the courses taken, for the university also finally gives lecturers policies for distance learning reports each finished giving the material. In this study the data collection method began by taking data from the faculty to find out which e-learning applications were widely used by lecturers, then distributing questionnaires to students and lecturers who used the e-learning application to measure the e-leaning application with the e-learning criteria. Appropriate. The data is then processed into a dataset. The algorithm used in implementing deep learning is Artificial Neural Network (ANN). For the implementation of ANN, 27 variables were determined from the e-learning criteria and 1 target. In this ANN stage, prediction was used with classifications based on preparation, training, learning, evaluation and prediction using the python programming. The results obtained in this study that the Moodle application gets the highest score with an accuracy of 97% to be used as a recommendation for e-learning applications that are appropriate for universities to conduct online lectures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度学习的实施,为远程学习的实际应用建议
本研究的目的是推荐适合在大学环境中使用的在线学习应用程序。讲师用于在线讲座活动的大量电子学习平台导致学生被迫使用几个电子学习应用程序,这取决于教授所选课程的讲师,因为大学最终还为讲师提供了远程学习报告的政策,每个讲师都完成了授课材料。在本研究中,数据收集方法首先从教师那里获取数据,找出哪些电子学习应用程序被讲师广泛使用,然后向使用电子学习应用程序的学生和讲师分发调查问卷,以电子学习标准衡量电子学习应用程序。合适的。然后将数据处理成一个数据集。用于实现深度学习的算法是人工神经网络(ANN)。为了实现人工神经网络,从电子学习标准和1个目标中确定了27个变量。在这个人工神经网络阶段,预测与基于准备、训练、学习、评估和预测的分类结合使用,使用python编程。本研究得出的结果是Moodle应用程序获得了最高的分数,准确率为97%,可作为适合大学进行在线讲座的电子学习应用程序的推荐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
31
审稿时长
12 weeks
期刊最新文献
Perancangan konsep sistem monitoring untuk proyek pengembangan perangkat lunak pada dinas pemerintah kota manado Penerapan Algoritma FIFO Untuk System Pemesanan Kaos Sablon High School Students' Perceptions of Gerakan Literasi Sekolah Penentu Profitabilitas Bank Syariah: Kajian Nisbah Bagi Hasil dan Murabahah PENTINGNYA PENGATURAN DELIK PERDAGANGAN PENGARUH (TRADING INFLUENCE) PADA UNDANG-UNDANG TINDAK PIDANA KORUPSI DI INDONESIA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1