Negar Ravash, Javad Hesari, Ehsan Feizollahi, Harleen Kaur Dhaliwal, M. S. Roopesh
{"title":"Valorization of Cold Plasma Technologies for Eliminating Biological and Chemical Food Hazards","authors":"Negar Ravash, Javad Hesari, Ehsan Feizollahi, Harleen Kaur Dhaliwal, M. S. Roopesh","doi":"10.1007/s12393-023-09348-0","DOIUrl":null,"url":null,"abstract":"<p>The importance of addressing food safety is undeniable in today’s globalized food industry. Conventional thermal treatments negatively affect the nutritional and quality attributes of foods. Recently, non-thermal processing technologies have drawn much attention from the food industry and food research communities. Empirical data is available on the effectiveness of cold plasma, an emerging non-thermal technology, for eliminating chemical and biological hazards. This review aims to provide an overview of the impact of cold plasma on the major food hazards, including bacteria, bacterial spores, fungi, fungal spores, biofilms, viruses, mycotoxins, pesticides, and allergens. Cold plasma can effectively eliminate food hazards described above due to its numerous stress factors, including reactive oxygen/nitrogen species, charged particles, neutral or excited atoms and molecules, high energetic electrons, ultraviolet radiation, and electromagnetic fields. The oxidation, structural alteration, and destruction of cell components, dissociation of chemical bonds of mycotoxins as well as pesticides, and structural modification of allergens are the main inhibitory mechanisms of cold plasma. In several cases, nutritional and sensory attributes of cold plasma-treated foods were reported to be remained intact, and their shelf lives were extended. The factors affecting the decontamination efficacy of cold plasma are the treatment conditions, type of treated substrate, and the contaminants’ characteristics.\n</p>","PeriodicalId":565,"journal":{"name":"Food Engineering Reviews","volume":"16 1","pages":"22 - 58"},"PeriodicalIF":5.3000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12393-023-09348-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Engineering Reviews","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s12393-023-09348-0","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The importance of addressing food safety is undeniable in today’s globalized food industry. Conventional thermal treatments negatively affect the nutritional and quality attributes of foods. Recently, non-thermal processing technologies have drawn much attention from the food industry and food research communities. Empirical data is available on the effectiveness of cold plasma, an emerging non-thermal technology, for eliminating chemical and biological hazards. This review aims to provide an overview of the impact of cold plasma on the major food hazards, including bacteria, bacterial spores, fungi, fungal spores, biofilms, viruses, mycotoxins, pesticides, and allergens. Cold plasma can effectively eliminate food hazards described above due to its numerous stress factors, including reactive oxygen/nitrogen species, charged particles, neutral or excited atoms and molecules, high energetic electrons, ultraviolet radiation, and electromagnetic fields. The oxidation, structural alteration, and destruction of cell components, dissociation of chemical bonds of mycotoxins as well as pesticides, and structural modification of allergens are the main inhibitory mechanisms of cold plasma. In several cases, nutritional and sensory attributes of cold plasma-treated foods were reported to be remained intact, and their shelf lives were extended. The factors affecting the decontamination efficacy of cold plasma are the treatment conditions, type of treated substrate, and the contaminants’ characteristics.
期刊介绍:
Food Engineering Reviews publishes articles encompassing all engineering aspects of today’s scientific food research. The journal focuses on both classic and modern food engineering topics, exploring essential factors such as the health, nutritional, and environmental aspects of food processing. Trends that will drive the discipline over time, from the lab to industrial implementation, are identified and discussed. The scope of topics addressed is broad, including transport phenomena in food processing; food process engineering; physical properties of foods; food nano-science and nano-engineering; food equipment design; food plant design; modeling food processes; microbial inactivation kinetics; preservation technologies; engineering aspects of food packaging; shelf-life, storage and distribution of foods; instrumentation, control and automation in food processing; food engineering, health and nutrition; energy and economic considerations in food engineering; sustainability; and food engineering education.