Automated brain segmentation for guidance of ultrasonic transcranial tissue pulsatility image analysis

Daniel F. Leotta , John C. Kucewicz , Nina LaPiana , Pierre D. Mourad
{"title":"Automated brain segmentation for guidance of ultrasonic transcranial tissue pulsatility image analysis","authors":"Daniel F. Leotta ,&nbsp;John C. Kucewicz ,&nbsp;Nina LaPiana ,&nbsp;Pierre D. Mourad","doi":"10.1016/j.neuri.2023.100146","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and Objective</h3><p>Tissue pulsatility imaging is an ultrasonic technique that can be used to map regional changes in blood flow in the brain. Classification of regional differences in pulsatility signals can be optimized by restricting the analysis to brain tissue. For 2D transcranial ultrasound imaging, we have implemented an automated image analysis procedure to specify a region of interest in the field of view that corresponds to brain.</p></div><div><h3>Methods</h3><p>Our segmentation method applies an initial K-means clustering algorithm that incorporates both echo strength and tissue displacement to identify skull in ultrasound brain scans. The clustering step is followed by processing steps that use knowledge of the scan format and anatomy to create an image mask that designates brain tissue. Brain regions were extracted from the ultrasound data using different numbers of K-means clusters and multiple combinations of ultrasound data. Masks generated from ultrasound data were compared with reference masks derived from Computed Tomography (CT) data.</p></div><div><h3>Results</h3><p>A segmentation algorithm based on ultrasound intensity with two K-means clusters achieves an accuracy better than 80% match with the CT data. Some improvement in the match is found with an algorithm that uses ultrasound intensity and displacement data, three K-means clusters, and addition of an algorithm to identify shallow sources of ultrasound shadowing.</p></div><div><h3>Conclusions</h3><p>Several segmentation algorithms achieve a match of over 80% between the ultrasound and Computed Tomography brain masks. A final tradeoff can be made between processing complexity and the best match of the two data sets.</p></div>","PeriodicalId":74295,"journal":{"name":"Neuroscience informatics","volume":"3 4","pages":"Article 100146"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience informatics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772528623000316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background and Objective

Tissue pulsatility imaging is an ultrasonic technique that can be used to map regional changes in blood flow in the brain. Classification of regional differences in pulsatility signals can be optimized by restricting the analysis to brain tissue. For 2D transcranial ultrasound imaging, we have implemented an automated image analysis procedure to specify a region of interest in the field of view that corresponds to brain.

Methods

Our segmentation method applies an initial K-means clustering algorithm that incorporates both echo strength and tissue displacement to identify skull in ultrasound brain scans. The clustering step is followed by processing steps that use knowledge of the scan format and anatomy to create an image mask that designates brain tissue. Brain regions were extracted from the ultrasound data using different numbers of K-means clusters and multiple combinations of ultrasound data. Masks generated from ultrasound data were compared with reference masks derived from Computed Tomography (CT) data.

Results

A segmentation algorithm based on ultrasound intensity with two K-means clusters achieves an accuracy better than 80% match with the CT data. Some improvement in the match is found with an algorithm that uses ultrasound intensity and displacement data, three K-means clusters, and addition of an algorithm to identify shallow sources of ultrasound shadowing.

Conclusions

Several segmentation algorithms achieve a match of over 80% between the ultrasound and Computed Tomography brain masks. A final tradeoff can be made between processing complexity and the best match of the two data sets.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自动脑分割指导超声经颅组织脉搏图像分析
背景和目的组织搏动成像是一种超声技术,可用于绘制大脑血流的区域变化。可以通过将分析限制在脑组织上来优化脉动信号的区域差异的分类。对于2D经颅超声成像,我们已经实现了一种自动图像分析程序,以指定视野中与大脑相对应的感兴趣区域。方法在超声脑扫描中,我们的分割方法采用结合回波强度和组织位移的初始K-means聚类算法来识别颅骨。聚类步骤之后是使用扫描格式和解剖学知识来创建指定脑组织的图像掩模的处理步骤。使用不同数量的K-means聚类和超声数据的多种组合从超声数据中提取大脑区域。将从超声数据生成的掩模与从计算机断层扫描(CT)数据导出的参考掩模进行比较。结果基于两个K-means聚类的超声强度分割算法与CT数据的匹配精度达到80%以上。通过使用超声强度和位移数据的算法、三个K-means聚类以及添加识别超声阴影浅源的算法,发现了匹配方面的一些改进。结论几种分割算法实现了超声与计算机断层扫描脑蒙片80%以上的匹配。可以在处理复杂性和两个数据集的最佳匹配之间进行最后的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neuroscience informatics
Neuroscience informatics Surgery, Radiology and Imaging, Information Systems, Neurology, Artificial Intelligence, Computer Science Applications, Signal Processing, Critical Care and Intensive Care Medicine, Health Informatics, Clinical Neurology, Pathology and Medical Technology
自引率
0.00%
发文量
0
审稿时长
57 days
期刊最新文献
Integrated analysis of lncRNA-miRNA-mRNA ceRNA network in neurodegenerative diseases Topic modeling of neuropsychiatric diseases related to gut microbiota and gut brain axis using artificial intelligence based BERTopic model on PubMed abstracts Brain network analysis in Parkinson's disease patients based on graph theory Exploring age-related functional brain changes during audio-visual integration tasks in early to mid-adulthood Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1