Benchmarking solutions to the T-cell receptor epitope prediction problem: IMMREP22 workshop report

Pieter Meysman , Justin Barton , Barbara Bravi , Liel Cohen-Lavi , Vadim Karnaukhov , Elias Lilleskov , Alessandro Montemurro , Morten Nielsen , Thierry Mora , Paul Pereira , Anna Postovskaya , María Rodríguez Martínez , Jorge Fernandez-de-Cossio-Diaz , Alexandra Vujkovic , Aleksandra M. Walczak , Anna Weber , Rose Yin , Anne Eugster , Virag Sharma
{"title":"Benchmarking solutions to the T-cell receptor epitope prediction problem: IMMREP22 workshop report","authors":"Pieter Meysman ,&nbsp;Justin Barton ,&nbsp;Barbara Bravi ,&nbsp;Liel Cohen-Lavi ,&nbsp;Vadim Karnaukhov ,&nbsp;Elias Lilleskov ,&nbsp;Alessandro Montemurro ,&nbsp;Morten Nielsen ,&nbsp;Thierry Mora ,&nbsp;Paul Pereira ,&nbsp;Anna Postovskaya ,&nbsp;María Rodríguez Martínez ,&nbsp;Jorge Fernandez-de-Cossio-Diaz ,&nbsp;Alexandra Vujkovic ,&nbsp;Aleksandra M. Walczak ,&nbsp;Anna Weber ,&nbsp;Rose Yin ,&nbsp;Anne Eugster ,&nbsp;Virag Sharma","doi":"10.1016/j.immuno.2023.100024","DOIUrl":null,"url":null,"abstract":"<div><p>Many different solutions to predicting the cognate epitope target of a T-cell receptor (TCR) have been proposed. However several questions on the advantages and disadvantages of these different approaches remain unresolved, as most methods have only been evaluated within the context of their initial publications and data sets. Here, we report the findings of the first public TCR-epitope prediction benchmark performed on 23 prediction models in the context of the ImmRep 2022 TCR-epitope specificity workshop. This benchmark revealed that the use of paired-chain alpha-beta, as well as CDR1/2 or V/J information, when available, improves classification obtained with CDR3 data, independent of the underlying approach. In addition, we found that straight-forward distance-based approaches can achieve a respectable performance when compared to more complex machine-learning models. Finally, we highlight the need for a truly independent follow-up benchmark and provide recommendations for the design of such a next benchmark.</p></div>","PeriodicalId":73343,"journal":{"name":"Immunoinformatics (Amsterdam, Netherlands)","volume":"9 ","pages":"Article 100024"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunoinformatics (Amsterdam, Netherlands)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667119023000046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many different solutions to predicting the cognate epitope target of a T-cell receptor (TCR) have been proposed. However several questions on the advantages and disadvantages of these different approaches remain unresolved, as most methods have only been evaluated within the context of their initial publications and data sets. Here, we report the findings of the first public TCR-epitope prediction benchmark performed on 23 prediction models in the context of the ImmRep 2022 TCR-epitope specificity workshop. This benchmark revealed that the use of paired-chain alpha-beta, as well as CDR1/2 or V/J information, when available, improves classification obtained with CDR3 data, independent of the underlying approach. In addition, we found that straight-forward distance-based approaches can achieve a respectable performance when compared to more complex machine-learning models. Finally, we highlight the need for a truly independent follow-up benchmark and provide recommendations for the design of such a next benchmark.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
t细胞受体表位预测问题的基准解决方案:IMMREP22研讨会报告
人们提出了许多不同的方法来预测t细胞受体(TCR)的同源表位靶点。然而,关于这些不同方法的优缺点的几个问题仍然没有解决,因为大多数方法只是在其最初的出版物和数据集的范围内进行了评估。在这里,我们报告了在imrep 2022 tcr -表位特异性研讨会上对23个预测模型进行的首次公开tcr -表位预测基准的研究结果。该基准测试表明,使用配对链alpha-beta以及CDR1/2或V/J信息,在可用的情况下,可以改进使用CDR3数据获得的分类,而不依赖于底层方法。此外,我们发现,与更复杂的机器学习模型相比,直接的基于距离的方法可以获得可观的性能。最后,我们强调需要一个真正独立的后续基准,并为设计这样的下一个基准提供建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Immunoinformatics (Amsterdam, Netherlands)
Immunoinformatics (Amsterdam, Netherlands) Immunology, Computer Science Applications
自引率
0.00%
发文量
0
审稿时长
60 days
期刊最新文献
Scifer: An R/Bioconductor package for large-scale integration of Sanger sequencing and flow cytometry data of index-sorted single cells Lessons learned from the IMMREP23 TCR-epitope prediction challenge Multicohort analysis identifies conserved transcriptional interactions between humans and Plasmodium falciparum In silico modelling of CD8 T cell immune response links genetic regulation to population dynamics Data mining antibody sequences for database searching in bottom-up proteomics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1