Energy-Efficient Organic Ferroelectric Tunnel Junction Memristors for Neuromorphic Computing

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Electronic Materials Pub Date : 2019-01-03 DOI:10.1002/aelm.201800795
Sayani Majumdar, Hongwei Tan, Qi Hang Qin, Sebastiaan van Dijken
{"title":"Energy-Efficient Organic Ferroelectric Tunnel Junction Memristors for Neuromorphic Computing","authors":"Sayani Majumdar,&nbsp;Hongwei Tan,&nbsp;Qi Hang Qin,&nbsp;Sebastiaan van Dijken","doi":"10.1002/aelm.201800795","DOIUrl":null,"url":null,"abstract":"<p>Energy efficiency, parallel information processing, and unsupervised learning make the human brain a model computing system for unstructured data handling. Different types of oxide memristors can emulate synaptic functions in artificial neuromorphic circuits. However, their cycle-to-cycle variability or strict epitaxy requirements remain a challenge for applications in large-scale neural networks. Here, solution-processable ferroelectric tunnel junctions (FTJs) with P(VDF-TrFE) copolymer barriers are reported showing analog memristive behavior with a broad range of accessible conductance states and low energy dissipation of 100 fJ for the onset of depression and 1 pJ for the onset of potentiation by resetting small tunneling currents on nanosecond timescales. Key synaptic functions like programmable synaptic weight, long- and short-term potentiation and depression, paired-pulse facilitation and depression, and Hebbian and anti-Hebbian learning through spike shape and timing-dependent plasticity are demonstrated. In combination with good switching endurance and reproducibility, these results offer a promising outlook on the use of organic FTJ memristors as building blocks in artificial neural networks.</p>","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"5 3","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2019-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/aelm.201800795","citationCount":"119","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aelm.201800795","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 119

Abstract

Energy efficiency, parallel information processing, and unsupervised learning make the human brain a model computing system for unstructured data handling. Different types of oxide memristors can emulate synaptic functions in artificial neuromorphic circuits. However, their cycle-to-cycle variability or strict epitaxy requirements remain a challenge for applications in large-scale neural networks. Here, solution-processable ferroelectric tunnel junctions (FTJs) with P(VDF-TrFE) copolymer barriers are reported showing analog memristive behavior with a broad range of accessible conductance states and low energy dissipation of 100 fJ for the onset of depression and 1 pJ for the onset of potentiation by resetting small tunneling currents on nanosecond timescales. Key synaptic functions like programmable synaptic weight, long- and short-term potentiation and depression, paired-pulse facilitation and depression, and Hebbian and anti-Hebbian learning through spike shape and timing-dependent plasticity are demonstrated. In combination with good switching endurance and reproducibility, these results offer a promising outlook on the use of organic FTJ memristors as building blocks in artificial neural networks.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于神经形态计算的高能效有机铁电隧道结忆阻器
能源效率、并行信息处理和无监督学习使人脑成为非结构化数据处理的模型计算系统。不同类型的氧化物忆阻器可以模拟人工神经形态回路中的突触功能。然而,它们的周期到周期的可变性或严格的外延要求仍然是大规模神经网络应用的挑战。本文报道了具有P(VDF-TrFE)共聚物势垒的溶液可加工铁电隧道结(ftj)表现出类似的忆阻行为,具有广泛的可达电导状态和低能量耗散,通过在纳秒时间尺度上重置小隧道电流,降低时为100 fJ,增强时为1 pJ。关键的突触功能如可编程突触重量、长、短期增强和抑制、配对脉冲促进和抑制、以及通过脉冲形状和时间依赖的可塑性进行的Hebbian和反Hebbian学习。结合良好的开关耐久性和可重复性,这些结果为使用有机FTJ忆阻器作为人工神经网络的构建模块提供了一个有希望的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
期刊最新文献
Development of a Nb-Based Semiconductor-Superconductor Hybrid 2DEG Platform Bandgap-Dependent Doping of Semiconducting Carbon Nanotube Networks by Proton-Coupled Electron Transfer for Stable Thermoelectrics Computational and AI-Driven Design of Hydrogels for Bioelectronic Applications A Transient Photoelectric Spiking Neuron Based on a Highly Robust MgO Composite Threshold Switching Memristor for Selective UV Perception Organic Photo-Responsive Piezoelectric Materials Based on Pyrene Molecules for Flexible Sensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1