NONPARAMETRIC ESTIMATION AND TESTING FOR PANEL COUNT DATA WITH INFORMATIVE TERMINAL EVENT.

IF 1.2 3区 数学 Q2 STATISTICS & PROBABILITY Statistica Sinica Pub Date : 2023-10-01 DOI:10.5705/ss.202021.0213
Xiangbin Hu, Li Liu, Ying Zhang, Xingqiu Zhao
{"title":"NONPARAMETRIC ESTIMATION AND TESTING FOR PANEL COUNT DATA WITH INFORMATIVE TERMINAL EVENT.","authors":"Xiangbin Hu, Li Liu, Ying Zhang, Xingqiu Zhao","doi":"10.5705/ss.202021.0213","DOIUrl":null,"url":null,"abstract":"<p><p>Informative terminal events often occur in the long term recurrent event follow-up studies. To reflect their effects on recurrent event processes explicitly, we propose a reversed nonparametric mean model for panel count data with a terminal event subject to right censoring. This model enjoys meaningful interpretation for applications and robustness for statistical inference. Treating the distribution of the right-censored terminal event time as a nuisance functional parameter, we develop a two-stage estimation procedure by combining the Kaplan-Meier estimator and nonparametric sieve estimation techniques. The consistency, convergence rate and asymptotic normality of the proposed nonparametric estimator are established. Then we construct a class of new statistics for two-sample test. The asymptotic properties of the new tests are established and evaluated by extensive simulation studies. Panel count data from Chinese Longitudinal Healthy Longevity study are analyzed using the proposed method for illustration.</p>","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":"1 1","pages":"2763-2786"},"PeriodicalIF":1.2000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12030113/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Sinica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5705/ss.202021.0213","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Informative terminal events often occur in the long term recurrent event follow-up studies. To reflect their effects on recurrent event processes explicitly, we propose a reversed nonparametric mean model for panel count data with a terminal event subject to right censoring. This model enjoys meaningful interpretation for applications and robustness for statistical inference. Treating the distribution of the right-censored terminal event time as a nuisance functional parameter, we develop a two-stage estimation procedure by combining the Kaplan-Meier estimator and nonparametric sieve estimation techniques. The consistency, convergence rate and asymptotic normality of the proposed nonparametric estimator are established. Then we construct a class of new statistics for two-sample test. The asymptotic properties of the new tests are established and evaluated by extensive simulation studies. Panel count data from Chinese Longitudinal Healthy Longevity study are analyzed using the proposed method for illustration.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有信息终端事件的面板计数数据的非参数估计和检验。
信息性终末事件经常发生在长期复发事件随访研究中。为了明确地反映它们对反复事件过程的影响,我们提出了一个反向非参数平均模型,用于具有右审查的终端事件的面板计数数据。该模型对应用有意义的解释,对统计推断具有鲁棒性。将右截尾终端事件时间的分布作为一个累加函数参数,结合Kaplan-Meier估计和非参数筛估计技术,提出了一种两阶段估计方法。给出了该非参数估计量的相合性、收敛率和渐近正态性。然后构造了一类新的双样本检验统计量。通过大量的模拟研究,建立并评估了新测试的渐近性质。采用本文提出的方法对中国纵向健康寿命研究的面板计数数据进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistica Sinica
Statistica Sinica 数学-统计学与概率论
CiteScore
2.10
自引率
0.00%
发文量
82
审稿时长
10.5 months
期刊介绍: Statistica Sinica aims to meet the needs of statisticians in a rapidly changing world. It provides a forum for the publication of innovative work of high quality in all areas of statistics, including theory, methodology and applications. The journal encourages the development and principled use of statistical methodology that is relevant for society, science and technology.
期刊最新文献
STATISTICAL INFERENCE FOR MEAN FUNCTIONS OF COMPLEX 3D OBJECTS. High-dimensional Subgroup Regression Analysis. A New Paradigm for Generative Adversarial Networks based on Randomized Decision Rules. Multi-response Regression for Block-missing Multi-modal Data without Imputation. On the Efficiency of Composite Likelihood Estimation for Gaussian Spatial Processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1