Generalized Odds Rate Frailty Models for Current Status Data with Informative Censoring

IF 1.5 3区 数学 Q2 STATISTICS & PROBABILITY Statistica Sinica Pub Date : 2024-01-01 DOI:10.5705/ss.202021.0411
Yang Xu, Shishun Zhao, T. Hu, Jianguo Sun
{"title":"Generalized Odds Rate Frailty Models for Current Status Data with Informative Censoring","authors":"Yang Xu, Shishun Zhao, T. Hu, Jianguo Sun","doi":"10.5705/ss.202021.0411","DOIUrl":null,"url":null,"abstract":": Current-status data occur in many areas, and the analysis of such data attracted much attention. In this study, we consider a regression analysis of current-status data in the presence of informative censoring, for which most existing methods either apply only to limited situations or are computationally unstable. Here, we propose a new sieve maximum likelihood estimation procedure under the class of semiparametric generalized odds rate frailty models. The proposed method uses the latent variable to describe the informative censoring or relationship between the failure time of interest and the censoring time. We develop a novel expectation-maximization algorithm for determining the proposed estimators, and establish their asymptotic consistency and normality. The results of a simulation study show that the proposed method performs well in practical","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":"1 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Sinica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5705/ss.202021.0411","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

: Current-status data occur in many areas, and the analysis of such data attracted much attention. In this study, we consider a regression analysis of current-status data in the presence of informative censoring, for which most existing methods either apply only to limited situations or are computationally unstable. Here, we propose a new sieve maximum likelihood estimation procedure under the class of semiparametric generalized odds rate frailty models. The proposed method uses the latent variable to describe the informative censoring or relationship between the failure time of interest and the censoring time. We develop a novel expectation-maximization algorithm for determining the proposed estimators, and establish their asymptotic consistency and normality. The results of a simulation study show that the proposed method performs well in practical
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有信息过滤的当前状态数据的广义优势率脆弱模型
现状数据出现在许多领域,对这些数据的分析引起了人们的广泛关注。在本研究中,我们考虑在存在信息审查的情况下对当前状态数据进行回归分析,因为大多数现有方法要么只适用于有限的情况,要么在计算上不稳定。在半参数广义优势率脆弱性模型下,我们提出了一种新的筛极大似然估计方法。该方法使用隐变量来描述信息的审查或感兴趣的失效时间与审查时间之间的关系。我们开发了一种新的期望最大化算法来确定所提出的估计量,并建立了它们的渐近相合性和正态性。仿真研究结果表明,该方法在实际应用中具有良好的性能。E-mail: hutaomath@foxmail.com中国统计:预印本doi:10.5705/ss.202021.0411
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistica Sinica
Statistica Sinica 数学-统计学与概率论
CiteScore
2.10
自引率
0.00%
发文量
82
审稿时长
10.5 months
期刊介绍: Statistica Sinica aims to meet the needs of statisticians in a rapidly changing world. It provides a forum for the publication of innovative work of high quality in all areas of statistics, including theory, methodology and applications. The journal encourages the development and principled use of statistical methodology that is relevant for society, science and technology.
期刊最新文献
Multi-response Regression for Block-missing Multi-modal Data without Imputation. On the Efficiency of Composite Likelihood Estimation for Gaussian Spatial Processes Adaptive Randomization via Mahalanobis Distance Unbiased Boosting Estimation for Censored Survival Data Parsimonious Tensor Discriminant Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1