{"title":"Generalized Odds Rate Frailty Models for Current Status Data with Informative Censoring","authors":"Yang Xu, Shishun Zhao, T. Hu, Jianguo Sun","doi":"10.5705/ss.202021.0411","DOIUrl":null,"url":null,"abstract":": Current-status data occur in many areas, and the analysis of such data attracted much attention. In this study, we consider a regression analysis of current-status data in the presence of informative censoring, for which most existing methods either apply only to limited situations or are computationally unstable. Here, we propose a new sieve maximum likelihood estimation procedure under the class of semiparametric generalized odds rate frailty models. The proposed method uses the latent variable to describe the informative censoring or relationship between the failure time of interest and the censoring time. We develop a novel expectation-maximization algorithm for determining the proposed estimators, and establish their asymptotic consistency and normality. The results of a simulation study show that the proposed method performs well in practical","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":"1 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Sinica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5705/ss.202021.0411","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
: Current-status data occur in many areas, and the analysis of such data attracted much attention. In this study, we consider a regression analysis of current-status data in the presence of informative censoring, for which most existing methods either apply only to limited situations or are computationally unstable. Here, we propose a new sieve maximum likelihood estimation procedure under the class of semiparametric generalized odds rate frailty models. The proposed method uses the latent variable to describe the informative censoring or relationship between the failure time of interest and the censoring time. We develop a novel expectation-maximization algorithm for determining the proposed estimators, and establish their asymptotic consistency and normality. The results of a simulation study show that the proposed method performs well in practical
期刊介绍:
Statistica Sinica aims to meet the needs of statisticians in a rapidly changing world. It provides a forum for the publication of innovative work of high quality in all areas of statistics, including theory, methodology and applications. The journal encourages the development and principled use of statistical methodology that is relevant for society, science and technology.