{"title":"Statistical Inference for Mean Function of Longitudinal Imaging Data over Complicated Domains","authors":"Qirui Hu, Jie Li","doi":"10.5705/ss.202021.0415","DOIUrl":null,"url":null,"abstract":"We propose a novel procedure for estimating the mean function of longitudinal imaging data with inherent spatial and temporal correlation. We depict the dependence between temporally ordered images using a functional moving average, and use flexible bivariate splines over triangulations to handle the irregular domain of images which is common in imaging studies. We establish both the global and the local asymptotic properties of the bivariate spline estimator for the mean function, with simultaneous confidence corridors (SCCs) as a theoretical byproduct. Under some mild conditions, the proposed estimator and its accompanying SCCs are shown to be consistent and oracle efficient, as though all images were entirely observed without errors. We use Monte Carlo simulation experiments to demonstrate the finite-sample performance of the proposed method, the results of which strongly corroborate the asymptotic theory. The proposed method is further illustrated by analyzing two seawater potential temperature data sets.","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":"1 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Sinica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5705/ss.202021.0415","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1
Abstract
We propose a novel procedure for estimating the mean function of longitudinal imaging data with inherent spatial and temporal correlation. We depict the dependence between temporally ordered images using a functional moving average, and use flexible bivariate splines over triangulations to handle the irregular domain of images which is common in imaging studies. We establish both the global and the local asymptotic properties of the bivariate spline estimator for the mean function, with simultaneous confidence corridors (SCCs) as a theoretical byproduct. Under some mild conditions, the proposed estimator and its accompanying SCCs are shown to be consistent and oracle efficient, as though all images were entirely observed without errors. We use Monte Carlo simulation experiments to demonstrate the finite-sample performance of the proposed method, the results of which strongly corroborate the asymptotic theory. The proposed method is further illustrated by analyzing two seawater potential temperature data sets.
期刊介绍:
Statistica Sinica aims to meet the needs of statisticians in a rapidly changing world. It provides a forum for the publication of innovative work of high quality in all areas of statistics, including theory, methodology and applications. The journal encourages the development and principled use of statistical methodology that is relevant for society, science and technology.