Weighted Nonlinear Regression With Nonstationary Time Series

IF 1.5 3区 数学 Q2 STATISTICS & PROBABILITY Statistica Sinica Pub Date : 2023-01-01 DOI:10.5705/ss.202021.0426
Chunlei Jin, Qiying Wang
{"title":"Weighted Nonlinear Regression With Nonstationary Time Series","authors":"Chunlei Jin, Qiying Wang","doi":"10.5705/ss.202021.0426","DOIUrl":null,"url":null,"abstract":": This study investigates a weighted least squares (WLS) estimation in a nonlinear cointegrating regression. In a nonlinear regression model, where the regressors include nearly integrated arrays and stationary processes, we show that the WLS estimator has a mixed Gaussian limit, and the corresponding Studentized statistic converges to a standard normal distribution. The WLS estimator is free of the memory parameter, even when a fractional process is included in the regressors. We also consider an ordinary least squares estimation in a nonlinear cointegrating regression. Compared with the WLS estimator, the limit distribution of the ordinary least squares estimator is non-Gaussian, and depends on the nuisance parameters from the regressors when the regression function is non-integrable.","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":"1 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Sinica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5705/ss.202021.0426","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

: This study investigates a weighted least squares (WLS) estimation in a nonlinear cointegrating regression. In a nonlinear regression model, where the regressors include nearly integrated arrays and stationary processes, we show that the WLS estimator has a mixed Gaussian limit, and the corresponding Studentized statistic converges to a standard normal distribution. The WLS estimator is free of the memory parameter, even when a fractional process is included in the regressors. We also consider an ordinary least squares estimation in a nonlinear cointegrating regression. Compared with the WLS estimator, the limit distribution of the ordinary least squares estimator is non-Gaussian, and depends on the nuisance parameters from the regressors when the regression function is non-integrable.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非平稳时间序列的加权非线性回归
本文研究了非线性协整回归的加权最小二乘估计。在非线性回归模型中,当回归量包括近集成阵列和平稳过程时,我们证明了WLS估计量具有混合高斯极限,并且相应的学生统计量收敛于标准正态分布。即使在回归量中包含分数过程,WLS估计器也不受内存参数的影响。我们还考虑了非线性协整回归中的普通最小二乘估计。与WLS估计量相比,当回归函数不可积时,普通最小二乘估计量的极限分布是非高斯分布,并且依赖于来自回归量的干扰参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistica Sinica
Statistica Sinica 数学-统计学与概率论
CiteScore
2.10
自引率
0.00%
发文量
82
审稿时长
10.5 months
期刊介绍: Statistica Sinica aims to meet the needs of statisticians in a rapidly changing world. It provides a forum for the publication of innovative work of high quality in all areas of statistics, including theory, methodology and applications. The journal encourages the development and principled use of statistical methodology that is relevant for society, science and technology.
期刊最新文献
Multi-response Regression for Block-missing Multi-modal Data without Imputation. On the Efficiency of Composite Likelihood Estimation for Gaussian Spatial Processes Adaptive Randomization via Mahalanobis Distance Unbiased Boosting Estimation for Censored Survival Data Parsimonious Tensor Discriminant Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1