Distributed Mean Dimension Reduction Through Semi-parametric Approaches

IF 1.5 3区 数学 Q2 STATISTICS & PROBABILITY Statistica Sinica Pub Date : 2023-01-01 DOI:10.5705/ss.202022.0157
Zhengtian Zhu, Wang-li Xu, Liping Zhu
{"title":"Distributed Mean Dimension Reduction Through Semi-parametric Approaches","authors":"Zhengtian Zhu, Wang-li Xu, Liping Zhu","doi":"10.5705/ss.202022.0157","DOIUrl":null,"url":null,"abstract":"In the present article we recast the semi-parametric mean dimension reduction approaches under a least squares framework, which turns the problem of recovering the central mean subspace into a series of problems of estimating slopes in linear regressions. It also facilitates to incorporate penalties to produce sparse solutions. We further adapt the semi-parametric mean dimension reduction approaches to distributed settings when massive data are scattered at various locations and cannot be aggregated or processed through a single machine. We propose three communication-efficient distributed algorithms, the first yields a dense solution, the second produces a sparse estimation, and the third provides an orthonormal basis. The distributed algorithms reduce the computational complexities of the pooled ones substantially. In addition, the distributed algorithms attain oracle rates after a finite number of iterations. We conduct extensive numerical studies to demonstrate the finite-sample performance of the distributed estimates and to compare with the pooled algorithms.","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":"1 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Sinica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5705/ss.202022.0157","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

In the present article we recast the semi-parametric mean dimension reduction approaches under a least squares framework, which turns the problem of recovering the central mean subspace into a series of problems of estimating slopes in linear regressions. It also facilitates to incorporate penalties to produce sparse solutions. We further adapt the semi-parametric mean dimension reduction approaches to distributed settings when massive data are scattered at various locations and cannot be aggregated or processed through a single machine. We propose three communication-efficient distributed algorithms, the first yields a dense solution, the second produces a sparse estimation, and the third provides an orthonormal basis. The distributed algorithms reduce the computational complexities of the pooled ones substantially. In addition, the distributed algorithms attain oracle rates after a finite number of iterations. We conduct extensive numerical studies to demonstrate the finite-sample performance of the distributed estimates and to compare with the pooled algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
半参数方法的分布均值降维
在本文中,我们在最小二乘框架下对半参数均值降维方法进行了改造,将中心均值子空间的恢复问题转化为一系列线性回归中斜率的估计问题。它还有助于合并惩罚以生成稀疏解。我们进一步将半参数平均降维方法应用于分布式环境,当大量数据分散在不同位置,无法通过单个机器进行聚合或处理时。我们提出了三种通信高效的分布式算法,第一种算法产生密集解,第二种算法产生稀疏估计,第三种算法提供标准正交基。分布式算法大大降低了池化算法的计算复杂度。此外,分布式算法在有限次迭代后达到oracle率。我们进行了广泛的数值研究,以证明分布式估计的有限样本性能,并与池算法进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistica Sinica
Statistica Sinica 数学-统计学与概率论
CiteScore
2.10
自引率
0.00%
发文量
82
审稿时长
10.5 months
期刊介绍: Statistica Sinica aims to meet the needs of statisticians in a rapidly changing world. It provides a forum for the publication of innovative work of high quality in all areas of statistics, including theory, methodology and applications. The journal encourages the development and principled use of statistical methodology that is relevant for society, science and technology.
期刊最新文献
Multi-response Regression for Block-missing Multi-modal Data without Imputation. On the Efficiency of Composite Likelihood Estimation for Gaussian Spatial Processes Adaptive Randomization via Mahalanobis Distance Unbiased Boosting Estimation for Censored Survival Data Parsimonious Tensor Discriminant Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1