Grouped Network Poisson Autoregressive Model

IF 1.5 3区 数学 Q2 STATISTICS & PROBABILITY Statistica Sinica Pub Date : 2024-01-01 DOI:10.5705/ss.202022.0040
Yuxin Tao, Dongyu Li, Xiaoyue Niu
{"title":"Grouped Network Poisson Autoregressive Model","authors":"Yuxin Tao, Dongyu Li, Xiaoyue Niu","doi":"10.5705/ss.202022.0040","DOIUrl":null,"url":null,"abstract":"Grouped Network Poisson Autoregressive Model","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":"1 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Sinica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5705/ss.202022.0040","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

Abstract

Grouped Network Poisson Autoregressive Model
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分组网络泊松自回归模型
虽然多元泊松自回归模型是流行的拟合计数时间序列数据,统计推断是相当具有挑战性的。网络泊松自回归(NPAR)模型通过将网络信息纳入依赖结构来降低推理复杂性,其中每个个体的响应可以用其滞后值和相邻个体的平均效应来解释。然而,NPAR模型强烈假设所有个体都是同质的,并且有一个共同的自回归系数。在此,我们提出了一个分组网络泊松自回归(GNPAR)模型,该模型将个体分为不同的组,使用组特定参数来描述异构节点行为。给出了GNPAR模型的平稳性和遍历性,并研究了极大似然估计的渐近性质。我们开发了一种期望最大化算法来估计未知的组标签,并使用模拟研究了我们的估计过程的有限样本性能。我们分析了芝加哥警方调查停止报告的数据,并在芝加哥不同的社区发现了不同的依赖模式,这可能有助于未来的犯罪预防。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistica Sinica
Statistica Sinica 数学-统计学与概率论
CiteScore
2.10
自引率
0.00%
发文量
82
审稿时长
10.5 months
期刊介绍: Statistica Sinica aims to meet the needs of statisticians in a rapidly changing world. It provides a forum for the publication of innovative work of high quality in all areas of statistics, including theory, methodology and applications. The journal encourages the development and principled use of statistical methodology that is relevant for society, science and technology.
期刊最新文献
Multi-response Regression for Block-missing Multi-modal Data without Imputation. On the Efficiency of Composite Likelihood Estimation for Gaussian Spatial Processes Adaptive Randomization via Mahalanobis Distance Unbiased Boosting Estimation for Censored Survival Data Parsimonious Tensor Discriminant Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1