Jianling Wang, Thuan Nguyen, Y. Luan, Jiming Jiang
{"title":"On Estimation of the Logarithm of the Mean Squared Prediction Error of A Mixed-effect Predictor","authors":"Jianling Wang, Thuan Nguyen, Y. Luan, Jiming Jiang","doi":"10.5705/ss.202022.0043","DOIUrl":null,"url":null,"abstract":": The mean squared prediction error (MSPE) is an important measure of uncertainty in small-area estimation. It is desirable to produce a second-order unbiased MSPE estimator, that is, the bias of the estimator is o ( m − 1 ), where m is the total number of small areas for which data are available. However, this is difficult, especially if the estimator needs to be positive, or at least nonnegative. In fact, very few MSPE estimators are both second-order unbiased and guaranteed to be positive. We consider an alternative, easier approach of estimating the logarithm of the MSPE (log-MSPE), thus avoiding the positivity problem. We derive a second-order unbiased estimator of the log-MSPE using the Prasad–Rao linearization method. The results of empirical studies demonstrate the superiority of the proposed log-MSPE estimator over a naive log-MSPE estimator and an existing method, known as McJack. Lastly, we demonstrate the proposed method by applying it to real data.","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":"1 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Sinica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5705/ss.202022.0043","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
: The mean squared prediction error (MSPE) is an important measure of uncertainty in small-area estimation. It is desirable to produce a second-order unbiased MSPE estimator, that is, the bias of the estimator is o ( m − 1 ), where m is the total number of small areas for which data are available. However, this is difficult, especially if the estimator needs to be positive, or at least nonnegative. In fact, very few MSPE estimators are both second-order unbiased and guaranteed to be positive. We consider an alternative, easier approach of estimating the logarithm of the MSPE (log-MSPE), thus avoiding the positivity problem. We derive a second-order unbiased estimator of the log-MSPE using the Prasad–Rao linearization method. The results of empirical studies demonstrate the superiority of the proposed log-MSPE estimator over a naive log-MSPE estimator and an existing method, known as McJack. Lastly, we demonstrate the proposed method by applying it to real data.
期刊介绍:
Statistica Sinica aims to meet the needs of statisticians in a rapidly changing world. It provides a forum for the publication of innovative work of high quality in all areas of statistics, including theory, methodology and applications. The journal encourages the development and principled use of statistical methodology that is relevant for society, science and technology.