Hypotheses Testing of Functional Principal Components

IF 1.5 3区 数学 Q2 STATISTICS & PROBABILITY Statistica Sinica Pub Date : 2023-01-01 DOI:10.5705/ss.202022.0309
Zening Song, Lijian Yang, Yuanyuan Zhang
{"title":"Hypotheses Testing of Functional Principal Components","authors":"Zening Song, Lijian Yang, Yuanyuan Zhang","doi":"10.5705/ss.202022.0309","DOIUrl":null,"url":null,"abstract":": We propose a test for the hypothesis that the standardized functional principal components (FPCs) of functional data are equal to a given set of orthonormal bases (e.g., the Fourier basis). Using estimates of individual trajectories that satisfy certain approximation conditions, we construct a chi-square-type statistic, and show that it is oracally e(cid:14)cient under the null hypothesis, in the sense that its limiting distribution is the same as that of an infeasible statistic using all trajectories, known as the \\oracle.\" The null limiting distribution is an in(cid:12)nite Gaussian quadratic form, and we obtain a consistent estimator of its quantile. A test statistic based on the chi-squared-type statistic and the approximate quantile of the Gaussian quadratic form is shown to be both of the nominal asymptotic signi(cid:12)cance level and asymptotically correct. It is further shown that B-spline trajectory estimates meet the required approximation conditions. Simulation studies demonstrate the superior (cid:12)nite-sample performance of the proposed testing procedure. Using electroencephalogram (EEG) data, the proposed procedure con(cid:12)rms an interesting discovery that the centered EEG data are generated from a small","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":"1 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Sinica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5705/ss.202022.0309","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

Abstract

: We propose a test for the hypothesis that the standardized functional principal components (FPCs) of functional data are equal to a given set of orthonormal bases (e.g., the Fourier basis). Using estimates of individual trajectories that satisfy certain approximation conditions, we construct a chi-square-type statistic, and show that it is oracally e(cid:14)cient under the null hypothesis, in the sense that its limiting distribution is the same as that of an infeasible statistic using all trajectories, known as the \oracle." The null limiting distribution is an in(cid:12)nite Gaussian quadratic form, and we obtain a consistent estimator of its quantile. A test statistic based on the chi-squared-type statistic and the approximate quantile of the Gaussian quadratic form is shown to be both of the nominal asymptotic signi(cid:12)cance level and asymptotically correct. It is further shown that B-spline trajectory estimates meet the required approximation conditions. Simulation studies demonstrate the superior (cid:12)nite-sample performance of the proposed testing procedure. Using electroencephalogram (EEG) data, the proposed procedure con(cid:12)rms an interesting discovery that the centered EEG data are generated from a small
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
功能主成分的假设检验
我们提出了一个假设的检验,即功能数据的标准化功能主成分(FPCs)等于给定的一组标准正交基(例如,傅里叶基)。使用满足某些近似条件的单个轨迹的估计,我们构造了一个凿方型统计量,并表明它在零假设下是口头有效的,因为它的极限分布与使用所有轨迹的不可行的统计量的极限分布相同,称为“神谕”。零极限分布是一个无限高斯二次型分布,得到了其分位数的一致估计。基于高斯二次型的近似分位数和轮廓型统计量的检验统计量既具有名义渐近显著性水平,又具有渐近正确性。进一步证明了b样条轨迹估计满足所需的近似条件。仿真研究表明,所提出的测试方法具有良好的有限样本性能。利用脑电图(EEG)数据,所提出的程序证实了一个有趣的发现,即集中的EEG数据是由一个小的Statistica Sinica生成的
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistica Sinica
Statistica Sinica 数学-统计学与概率论
CiteScore
2.10
自引率
0.00%
发文量
82
审稿时长
10.5 months
期刊介绍: Statistica Sinica aims to meet the needs of statisticians in a rapidly changing world. It provides a forum for the publication of innovative work of high quality in all areas of statistics, including theory, methodology and applications. The journal encourages the development and principled use of statistical methodology that is relevant for society, science and technology.
期刊最新文献
Multi-response Regression for Block-missing Multi-modal Data without Imputation. On the Efficiency of Composite Likelihood Estimation for Gaussian Spatial Processes Adaptive Randomization via Mahalanobis Distance Unbiased Boosting Estimation for Censored Survival Data Parsimonious Tensor Discriminant Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1