Wei-Dong Jia , Xue Bai , Qian-Qian Ma , Ming Bian , Chun-Mei Bai , Di Li , Li-Fei Li , Cheng-xi Wei , Li-Jun Yu
{"title":"Synthesis, molecular docking studies of formononetin derivatives as potent Bax agonists for anticancer activity","authors":"Wei-Dong Jia , Xue Bai , Qian-Qian Ma , Ming Bian , Chun-Mei Bai , Di Li , Li-Fei Li , Cheng-xi Wei , Li-Jun Yu","doi":"10.1080/14786419.2023.2269592","DOIUrl":null,"url":null,"abstract":"<div><div>Formononetin as a Bax agonist exhibits anticancer effects. To identify novel Bax agonist, 18 new structurally modified formononetin derivatives were synthesised and their anticancer activities were evaluated in the A549 and Beas-2b cell lines. The results indicated that <strong>7a</strong> elicited the most potent inhibitory effect against the A549 cell line, with an IC<sub>50</sub> value of 0.87 μM, and no obvious toxicity to Beas-2b cells. These results indicated that 7a was 40-fold and 6.94-fold more efficacious than Formononetin and Doxorubicin, respectively. Additionally, western blot and immunofluorescence assays demonstrated that <strong>7a</strong> downregulated the protein expression of Bcl-2 and upregulated the expressions of Bax to promote A549 apoptosis, the obtained results also suggested that <strong>7a</strong> had the potential to be developed into a lead compound that can be applied in the prevention and treatment of lung cancer.</div></div>","PeriodicalId":18990,"journal":{"name":"Natural Product Research","volume":"39 3","pages":"Pages 423-437"},"PeriodicalIF":1.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Product Research","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1478641923022052","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Formononetin as a Bax agonist exhibits anticancer effects. To identify novel Bax agonist, 18 new structurally modified formononetin derivatives were synthesised and their anticancer activities were evaluated in the A549 and Beas-2b cell lines. The results indicated that 7a elicited the most potent inhibitory effect against the A549 cell line, with an IC50 value of 0.87 μM, and no obvious toxicity to Beas-2b cells. These results indicated that 7a was 40-fold and 6.94-fold more efficacious than Formononetin and Doxorubicin, respectively. Additionally, western blot and immunofluorescence assays demonstrated that 7a downregulated the protein expression of Bcl-2 and upregulated the expressions of Bax to promote A549 apoptosis, the obtained results also suggested that 7a had the potential to be developed into a lead compound that can be applied in the prevention and treatment of lung cancer.
期刊介绍:
The aim of Natural Product Research is to publish important contributions in the field of natural product chemistry. The journal covers all aspects of research in the chemistry and biochemistry of naturally occurring compounds.
The communications include coverage of work on natural substances of land and sea and of plants, microbes and animals. Discussions of structure elucidation, synthesis and experimental biosynthesis of natural products as well as developments of methods in these areas are welcomed in the journal. Finally, research papers in fields on the chemistry-biology boundary, eg. fermentation chemistry, plant tissue culture investigations etc., are accepted into the journal.
Natural Product Research issues will be subtitled either ""Part A - Synthesis and Structure"" or ""Part B - Bioactive Natural Products"". for details on this , see the forthcoming articles section.
All manuscript submissions are subject to initial appraisal by the Editor, and, if found suitable for further consideration, to peer review by independent, anonymous expert referees. All peer review is single blind and submission is online via ScholarOne Manuscripts.