Historical and future trends in South Asian monsoon low pressure systems in a high-resolution model ensemble

IF 8.5 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES npj Climate and Atmospheric Science Pub Date : 2023-11-08 DOI:10.1038/s41612-023-00502-3
S. Vishnu, William R. Boos, William D. Collins
{"title":"Historical and future trends in South Asian monsoon low pressure systems in a high-resolution model ensemble","authors":"S. Vishnu, William R. Boos, William D. Collins","doi":"10.1038/s41612-023-00502-3","DOIUrl":null,"url":null,"abstract":"Historical trends in monsoon low pressure systems (LPS), the dominant rain-bearing weather system of South Asia, have been difficult to assess due to changes in the observing network. Future projections have also remained uncertain because prior studies concluded that many coarse-resolution climate models do not accurately simulate LPS. Here, we examine changes in South Asian monsoon LPS simulated by an ensemble of global models, including some with high spatial resolution, that we show skillfully represent LPS. In the ensemble mean, the number of strong LPS (monsoon depressions) decreased over the last 65 years (1950–2014) by about 15% while no trend was detected for weaker LPS (monsoon lows). The reduction in depression counts then moderated, yielding no trend in the periods 1980–2050 or 2015–2050. The ensemble mean projects a shift in genesis from ocean to land and an increase in LPS precipitation of at least 7% K−1, which together contribute to a projected increase in seasonal mean and extreme precipitation over central India.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":" ","pages":"1-11"},"PeriodicalIF":8.5000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-023-00502-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41612-023-00502-3","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Historical trends in monsoon low pressure systems (LPS), the dominant rain-bearing weather system of South Asia, have been difficult to assess due to changes in the observing network. Future projections have also remained uncertain because prior studies concluded that many coarse-resolution climate models do not accurately simulate LPS. Here, we examine changes in South Asian monsoon LPS simulated by an ensemble of global models, including some with high spatial resolution, that we show skillfully represent LPS. In the ensemble mean, the number of strong LPS (monsoon depressions) decreased over the last 65 years (1950–2014) by about 15% while no trend was detected for weaker LPS (monsoon lows). The reduction in depression counts then moderated, yielding no trend in the periods 1980–2050 or 2015–2050. The ensemble mean projects a shift in genesis from ocean to land and an increase in LPS precipitation of at least 7% K−1, which together contribute to a projected increase in seasonal mean and extreme precipitation over central India.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高分辨率模式集合中南亚季风低压系统的历史和未来趋势
由于观测网络的变化,南亚主要的降雨天气系统季风低压系统(LPS)的历史趋势很难评估。未来的预测也仍然不确定,因为先前的研究得出结论,许多粗分辨率气候模型不能准确模拟LPS。在这里,我们研究了由一组全球模型模拟的南亚季风LPS的变化,其中包括一些具有高空间分辨率的模型,我们巧妙地展示了它们代表LPS。在总体平均值中,在过去65年(1950-2014年)中,强LPS(季风低压)的数量减少了约15%,而没有发现较弱LPS(季风低气压)的趋势。随后,抑郁症人数的减少有所放缓,在1980-2050年或2015-2050年期间没有出现任何趋势。总体平均值预测成因从海洋向陆地的转变,LPS降水量增加至少7%K−1,这共同导致印度中部季节平均值和极端降水量的预计增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Climate and Atmospheric Science
npj Climate and Atmospheric Science Earth and Planetary Sciences-Atmospheric Science
CiteScore
8.80
自引率
3.30%
发文量
87
审稿时长
21 weeks
期刊介绍: npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols. The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.
期刊最新文献
Dominance of open burning signatures in PM2.5 near coal plant should redefine pollutant priorities of India Climate model trend errors are evident in seasonal forecasts at short leads The slowdown of increasing groundwater storage in response to climate warming in the Tibetan Plateau Attributing the recent weakening of the South Asian subtropical westerlies Hybrid physics-AI outperforms numerical weather prediction for extreme precipitation nowcasting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1