{"title":"Brain tumour classification using MRI images based on lenet with golden teacher learning optimization.","authors":"Srilakshmi Aluri, Sagar S Imambi","doi":"10.1080/0954898X.2023.2275720","DOIUrl":null,"url":null,"abstract":"<p><p>Brain tumour (BT) is a dangerous neurological disorder produced by abnormal cell growth within the skull or brain. Nowadays, the death rate of people with BT is linearly growing. The finding of tumours at an early stage is crucial for giving treatment to patients, which improves the survival rate of patients. Hence, the BT classification (BTC) is done in this research using magnetic resonance imaging (MRI) images. In this research, the input MRI image is pre-processed using a non-local means (NLM) filter that denoises the input image. For attaining the effective classified result, the tumour area from the MRI image is segmented by the SegNet model. Furthermore, the BTC is accomplished by the LeNet model whose weight is optimized by the Golden Teacher Learning Optimization Algorithm (GTLO) such that the classified output produced by the LeNet model is Gliomas, Meningiomas, and Pituitary tumours. The experimental outcome displays that the GTLO-LeNet achieved an Accuracy of 0.896, Negative Predictive value (NPV) of 0.907, Positive Predictive value (PPV) of 0.821, True Negative Rate (TNR) of 0.880, and True Positive Rate (TPR) of 0.888.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"27-54"},"PeriodicalIF":1.1000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2023.2275720","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/8 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Brain tumour (BT) is a dangerous neurological disorder produced by abnormal cell growth within the skull or brain. Nowadays, the death rate of people with BT is linearly growing. The finding of tumours at an early stage is crucial for giving treatment to patients, which improves the survival rate of patients. Hence, the BT classification (BTC) is done in this research using magnetic resonance imaging (MRI) images. In this research, the input MRI image is pre-processed using a non-local means (NLM) filter that denoises the input image. For attaining the effective classified result, the tumour area from the MRI image is segmented by the SegNet model. Furthermore, the BTC is accomplished by the LeNet model whose weight is optimized by the Golden Teacher Learning Optimization Algorithm (GTLO) such that the classified output produced by the LeNet model is Gliomas, Meningiomas, and Pituitary tumours. The experimental outcome displays that the GTLO-LeNet achieved an Accuracy of 0.896, Negative Predictive value (NPV) of 0.907, Positive Predictive value (PPV) of 0.821, True Negative Rate (TNR) of 0.880, and True Positive Rate (TPR) of 0.888.
期刊介绍:
Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas:
Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function.
Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications.
Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis.
Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals.
Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET.
Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.