Signal Integrity of Submicron InFO Heterogeneous Integration for High Performance Computing Applications

Chuei-Tang Wang, J. Hsieh, V. Chang, Shih-Ya Huang, T. Ko, H. Pu, Douglas C. H. Yu
{"title":"Signal Integrity of Submicron InFO Heterogeneous Integration for High Performance Computing Applications","authors":"Chuei-Tang Wang, J. Hsieh, V. Chang, Shih-Ya Huang, T. Ko, H. Pu, Douglas C. H. Yu","doi":"10.1109/ECTC.2019.00109","DOIUrl":null,"url":null,"abstract":"Heterogeneous integration has attracted much attention for high performance computing (HPC) since artificial intelligence (AI) accelerators surged. The technologies for heterogeneous integration, such as silicon interposer (2.5D), fan-out wafer-level-packaging (FOWLP), and organic substrate, have been proposed to integrate logic-logic or logic-HBM chips in the AI system for performance and cost benefits. However, the tremendous data flow in 5G era requires higher data rate and bandwidth for the extensive die-to-die communication. Therefore, a BEOL-scale re-distributed layer (RDL) technology should be developed to satisfy the requirements. In this paper, a novel ultra-high-density InFO (InFO_UHD) technology with submicron RDL is developed to provide high interconnect density and bandwidth for logic-logic system. The bandwidth density can achieve record high 10 Tbps/mm at line width and spacing (L/S) of 0.8/0.8 um and length of 500 um, for a logic-logic system using simplified IO driver. Using the technology in logic-memory system, we found that the scaling of RDL thickness, L/S, and dielectric thickness can mitigate ring-back problems in the eye diagram of organic substrate. Given HBM2 specification, the bandwidth density can achieve more than 0.4 Tbps/mm from dramatically improved signal integrity. Finally, power efficiency, in the metric of energy per bit, of the interconnect technology under simplified IO driver and HBM2 driver condition was calculated and compared with other technology, respectively.","PeriodicalId":6726,"journal":{"name":"2019 IEEE 69th Electronic Components and Technology Conference (ECTC)","volume":"103 1","pages":"688-694"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 69th Electronic Components and Technology Conference (ECTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC.2019.00109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Heterogeneous integration has attracted much attention for high performance computing (HPC) since artificial intelligence (AI) accelerators surged. The technologies for heterogeneous integration, such as silicon interposer (2.5D), fan-out wafer-level-packaging (FOWLP), and organic substrate, have been proposed to integrate logic-logic or logic-HBM chips in the AI system for performance and cost benefits. However, the tremendous data flow in 5G era requires higher data rate and bandwidth for the extensive die-to-die communication. Therefore, a BEOL-scale re-distributed layer (RDL) technology should be developed to satisfy the requirements. In this paper, a novel ultra-high-density InFO (InFO_UHD) technology with submicron RDL is developed to provide high interconnect density and bandwidth for logic-logic system. The bandwidth density can achieve record high 10 Tbps/mm at line width and spacing (L/S) of 0.8/0.8 um and length of 500 um, for a logic-logic system using simplified IO driver. Using the technology in logic-memory system, we found that the scaling of RDL thickness, L/S, and dielectric thickness can mitigate ring-back problems in the eye diagram of organic substrate. Given HBM2 specification, the bandwidth density can achieve more than 0.4 Tbps/mm from dramatically improved signal integrity. Finally, power efficiency, in the metric of energy per bit, of the interconnect technology under simplified IO driver and HBM2 driver condition was calculated and compared with other technology, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高性能计算应用中亚微米信息异构集成的信号完整性
自人工智能(AI)加速器兴起以来,异构集成在高性能计算(HPC)领域受到了广泛关注。异质集成技术,如硅中间层(2.5D)、扇出晶圆级封装(FOWLP)和有机衬底,已经被提出在人工智能系统中集成逻辑-逻辑或逻辑- hbm芯片,以提高性能和成本效益。然而,5G时代巨大的数据流需要更高的数据速率和带宽来进行广泛的死对死通信。因此,需要开发一种beol规模的重新分布层(RDL)技术来满足需求。为了为逻辑-逻辑系统提供高互连密度和带宽,本文提出了一种具有亚微米RDL的超高密度信息(InFO_UHD)技术。对于使用简化IO驱动器的逻辑-逻辑系统,在线宽和间距(L/S)为0.8/0.8 um和长度为500 um时,带宽密度可达到创纪录的10 Tbps/mm。将该技术应用于逻辑存储系统中,我们发现RDL厚度、L/S和介电厚度的缩放可以减轻有机衬底眼图中的回环问题。在HBM2规格下,带宽密度可以达到0.4 Tbps/mm以上,显著提高了信号完整性。最后,计算了简化IO驱动和HBM2驱动条件下互连技术的功率效率,并分别与其他技术进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Further Enhancement of Thermal Conductivity through Optimal Uses of h-BN Fillers in Polymer-Based Thermal Interface Material for Power Electronics A Novel Design of a Bandwidth Enhanced Dual-Band Impedance Matching Network with Coupled Line Wave Slowing A New Development of Direct Bonding to Aluminum and Nickel Surfaces by Silver Sintering in air Atmosphere Signal Integrity of Submicron InFO Heterogeneous Integration for High Performance Computing Applications Multilayer Glass Substrate with High Density Via Structure for All Inorganic Multi-chip Module
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1