[Journal First] Are Fix-Inducing Changes a Moving Target?: A Longitudinal Case Study of Just-in-Time Defect Prediction

Shane McIntosh, Yasutaka Kamei
{"title":"[Journal First] Are Fix-Inducing Changes a Moving Target?: A Longitudinal Case Study of Just-in-Time Defect Prediction","authors":"Shane McIntosh, Yasutaka Kamei","doi":"10.1145/3180155.3182514","DOIUrl":null,"url":null,"abstract":"Just-In-Time (JIT) models identify fix-inducing code changes. JIT models are trained using techniques that assume that past fix-inducing changes are similar to future ones. However, this assumption may not hold, e.g., as system complexity tends to accrue, expertise may become more important as systems age. In this paper, we study JIT models as systems evolve. Through a longitudinal case study of 37,524 changes from the rapidly evolving Qt and OpenStack systems, we find that fluctuations in the properties of fix-inducing changes can impact the performance and interpretation of JIT models. More specifically: (a) the discriminatory power (AUC) and calibration (Brier) scores of JIT models drop considerably one year after being trained; (b) the role that code change properties (e.g., Size, Experience) play within JIT models fluctuates over time; and (c) those fluctuations yield over- and underestimates of the future impact of code change properties on the likelihood of inducing fixes. To avoid erroneous or misleading predictions, JIT models should be retrained using recently recorded data (within three months). Moreover, quality improvement plans should be informed by JIT models that are trained using six months (or more) of historical data, since they are more resilient to period-specific fluctuations in the importance of code change properties.","PeriodicalId":6560,"journal":{"name":"2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE)","volume":"34 1","pages":"560-560"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3180155.3182514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Just-In-Time (JIT) models identify fix-inducing code changes. JIT models are trained using techniques that assume that past fix-inducing changes are similar to future ones. However, this assumption may not hold, e.g., as system complexity tends to accrue, expertise may become more important as systems age. In this paper, we study JIT models as systems evolve. Through a longitudinal case study of 37,524 changes from the rapidly evolving Qt and OpenStack systems, we find that fluctuations in the properties of fix-inducing changes can impact the performance and interpretation of JIT models. More specifically: (a) the discriminatory power (AUC) and calibration (Brier) scores of JIT models drop considerably one year after being trained; (b) the role that code change properties (e.g., Size, Experience) play within JIT models fluctuates over time; and (c) those fluctuations yield over- and underestimates of the future impact of code change properties on the likelihood of inducing fixes. To avoid erroneous or misleading predictions, JIT models should be retrained using recently recorded data (within three months). Moreover, quality improvement plans should be informed by JIT models that are trained using six months (or more) of historical data, since they are more resilient to period-specific fluctuations in the importance of code change properties.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
[期刊第一]修正诱导变化是一个移动的目标吗?即时缺陷预测的纵向案例研究
即时(JIT)模型识别引起修复的代码更改。JIT模型使用的技术假定过去引起修复的更改与未来的更改相似。然而,这个假设可能不成立,例如,随着系统复杂性的增加,专业知识可能随着系统的老化而变得更加重要。在本文中,我们研究了随着系统演化的JIT模型。通过对快速发展的Qt和OpenStack系统的37,524个更改的纵向案例研究,我们发现修复诱导更改属性的波动会影响JIT模型的性能和解释。更具体地说:(a) JIT模型的歧视性(AUC)和校准(Brier)分数在训练一年后显著下降;(b)代码更改属性(例如,大小、经验)在JIT模型中所起的作用随时间而波动;(c)这些波动导致高估和低估了代码更改属性对诱导修复可能性的未来影响。为了避免错误或误导性的预测,应该使用最近记录的数据(三个月内)重新训练JIT模型。此外,质量改进计划应该由使用六个月(或更长时间)历史数据训练的JIT模型提供,因为它们对代码更改属性的重要性的特定周期波动更有弹性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Launch-Mode-Aware Context-Sensitive Activity Transition Analysis A Combinatorial Approach for Exposing Off-Nominal Behaviors Perses: Syntax-Guided Program Reduction Fine-Grained Test Minimization From UI Design Image to GUI Skeleton: A Neural Machine Translator to Bootstrap Mobile GUI Implementation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1