{"title":"Condition monitoring through mining fault frequency from machine vibration data","authors":"M. Rashid, I. Gondal, J. Kamruzzaman","doi":"10.1109/IJCNN.2015.7280569","DOIUrl":null,"url":null,"abstract":"In machine health monitoring, fault frequency identification of potential bearing faults is very important and necessary when it comes to reliable operation of a given system. In this paper, we proposed a data mining based scheme for fault frequency identification from the bearing data. In this scheme, we propose a compact tree called SAP-tree (sliding window associated frequency pattern tree) which is built upon the analysis of frequency domain characteristics of machine vibration data. Using this tree we devised a sliding window-based associated frequency pattern mining technique, called SAP algorithm, that mines for the frequencies relevant to machine fault. Our SAP algorithm can mine associated frequency patterns in the current window with frequent pattern (FP)-growth like pattern-growth method and used these patterns to identify the fault frequency. Extensive experimental analyses show that our technique is very efficient in identifying fault frequency over vibration data stream.","PeriodicalId":6539,"journal":{"name":"2015 International Joint Conference on Neural Networks (IJCNN)","volume":"32 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2015.7280569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In machine health monitoring, fault frequency identification of potential bearing faults is very important and necessary when it comes to reliable operation of a given system. In this paper, we proposed a data mining based scheme for fault frequency identification from the bearing data. In this scheme, we propose a compact tree called SAP-tree (sliding window associated frequency pattern tree) which is built upon the analysis of frequency domain characteristics of machine vibration data. Using this tree we devised a sliding window-based associated frequency pattern mining technique, called SAP algorithm, that mines for the frequencies relevant to machine fault. Our SAP algorithm can mine associated frequency patterns in the current window with frequent pattern (FP)-growth like pattern-growth method and used these patterns to identify the fault frequency. Extensive experimental analyses show that our technique is very efficient in identifying fault frequency over vibration data stream.