{"title":"Front and back surface fields for point-contact solar cells","authors":"R. King, R. Sinton, R. M. Swanson","doi":"10.1109/PVSC.1988.105760","DOIUrl":null,"url":null,"abstract":"The authors discuss the use of planar dopant diffusions to reduce surface recombination in point-contact solar cells. These noncurrent collecting diffusions can boost the efficiency of point-contact cells significantly for incident intensities below about 5 suns (0.500 W/cm/sup 2/). At these low power levels, the surface recombination is the dominant recombination mechanism. Measured values of the emitter saturation current density, J/sub o/, of phosphorus diffusions at the oxidized silicon surface are presented for a range of surface concentrations and furnace conditions on untexturized","PeriodicalId":10562,"journal":{"name":"Conference Record of the Twentieth IEEE Photovoltaic Specialists Conference","volume":"1 1","pages":"538-544 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"1988-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the Twentieth IEEE Photovoltaic Specialists Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.1988.105760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38
Abstract
The authors discuss the use of planar dopant diffusions to reduce surface recombination in point-contact solar cells. These noncurrent collecting diffusions can boost the efficiency of point-contact cells significantly for incident intensities below about 5 suns (0.500 W/cm/sup 2/). At these low power levels, the surface recombination is the dominant recombination mechanism. Measured values of the emitter saturation current density, J/sub o/, of phosphorus diffusions at the oxidized silicon surface are presented for a range of surface concentrations and furnace conditions on untexturized