{"title":"Direct glassing of silicon solar cells","authors":"P. A. White, R. Crabb, A. Dollery","doi":"10.1109/PVSC.1988.105845","DOIUrl":null,"url":null,"abstract":"An alternate method of attaching coverglasses to silicon solar cells-currently achieved using silicone adhesives-is presented. The method is based on the electrostatic bonding of a specially developed glass that has an ideal expansion match to the silicon solar cell. Basically, the coverglass and cell are joined by a permanent chemical anodic bond formed by subjecting the cell and coverglass to voltage, temperature, and pressure while in intimate contact with each other. Because the front surface of the solar cell forms one of the bonding interfaces, it is important to understand the significance of changes in the cell design or type. Work performed in characterizing required cell parameters, e.g. coating type, texture, etc., and the effects of the bonding process on cell output are discussed.<<ETX>>","PeriodicalId":10562,"journal":{"name":"Conference Record of the Twentieth IEEE Photovoltaic Specialists Conference","volume":"1940 1","pages":"949-953 vol.2"},"PeriodicalIF":0.0000,"publicationDate":"1989-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the Twentieth IEEE Photovoltaic Specialists Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.1988.105845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
An alternate method of attaching coverglasses to silicon solar cells-currently achieved using silicone adhesives-is presented. The method is based on the electrostatic bonding of a specially developed glass that has an ideal expansion match to the silicon solar cell. Basically, the coverglass and cell are joined by a permanent chemical anodic bond formed by subjecting the cell and coverglass to voltage, temperature, and pressure while in intimate contact with each other. Because the front surface of the solar cell forms one of the bonding interfaces, it is important to understand the significance of changes in the cell design or type. Work performed in characterizing required cell parameters, e.g. coating type, texture, etc., and the effects of the bonding process on cell output are discussed.<>