Towards atomistic simulations of the electro-thermal properties of nanowire transistors

M. Luisier
{"title":"Towards atomistic simulations of the electro-thermal properties of nanowire transistors","authors":"M. Luisier","doi":"10.1109/IEDM.2012.6479057","DOIUrl":null,"url":null,"abstract":"In this paper, the electronic and thermal properties of ultra-scaled nanowire transistors are investigated using a single, atomistic, quantum transport simulator based on the Non-equilibrium Green's Function (NEGF) formalism as well as the tight-binding and valence-force-field methods to accurately describe the electron and phonon population, respectively. Although the length of the considered device structures does not exceed a few nanometers, dissipative scattering mechanisms such as electron-phonon and anharmonic phonon-phonon scattering still play an important role and should therefore be fully taken into account by the modeling approach. It will be shown here that these two effects strongly affect the performance of nanowire transistors, either by decreasing (backscattering) or increasing (opening of additional propagation channels) the electrical and thermal currents flowing through them.","PeriodicalId":6376,"journal":{"name":"2012 International Electron Devices Meeting","volume":"43 1","pages":"17.1.1-17.1.4"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Electron Devices Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2012.6479057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, the electronic and thermal properties of ultra-scaled nanowire transistors are investigated using a single, atomistic, quantum transport simulator based on the Non-equilibrium Green's Function (NEGF) formalism as well as the tight-binding and valence-force-field methods to accurately describe the electron and phonon population, respectively. Although the length of the considered device structures does not exceed a few nanometers, dissipative scattering mechanisms such as electron-phonon and anharmonic phonon-phonon scattering still play an important role and should therefore be fully taken into account by the modeling approach. It will be shown here that these two effects strongly affect the performance of nanowire transistors, either by decreasing (backscattering) or increasing (opening of additional propagation channels) the electrical and thermal currents flowing through them.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米线晶体管电热特性的原子模拟
本文利用基于非平衡格林函数(NEGF)形式主义的单原子量子输运模拟器,以及分别精确描述电子和声子居群的紧密结合和价-力场方法,研究了超尺度纳米线晶体管的电子和热特性。虽然所考虑的器件结构的长度不超过几纳米,但耗散散射机制,如电子-声子和非谐波声子-声子散射仍然发挥重要作用,因此在建模方法中应充分考虑。这里将显示,这两种效应通过减少(后向散射)或增加(打开额外的传播通道)流过纳米线晶体管的电流和热电流,强烈地影响纳米线晶体管的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the degradation of field-plate assisted RESURF power devices Effective Schottky Barrier Height modulation using dielectric dipoles for source/drain specific contact resistivity improvement Study of piezoresistive properties of advanced CMOS transistors: Thin film SOI, SiGe/SOI, unstrained and strained Tri-Gate Nanowires Design and performance of pseudo-spin-MOSFETs using nano-CMOS devices MOSFET performance and scalability enhancement by insertion of oxygen layers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1