Triangular-channel Ge NFETs on Si with (111) sidewall-enhanced Ion and nearly defect-free channels

Shu‐Han Hsu, Hung-Chih Chang, C. Chu, Yen‐Ting Chen, W. Tu, F. Hou, Chih-hung Lo, P. Sung, Bo-Yuan Chen, G. Huang, G. Luo, Cheewee Liu, C. Hu, Fu-Liang Yang
{"title":"Triangular-channel Ge NFETs on Si with (111) sidewall-enhanced Ion and nearly defect-free channels","authors":"Shu‐Han Hsu, Hung-Chih Chang, C. Chu, Yen‐Ting Chen, W. Tu, F. Hou, Chih-hung Lo, P. Sung, Bo-Yuan Chen, G. Huang, G. Luo, Cheewee Liu, C. Hu, Fu-Liang Yang","doi":"10.1109/IEDM.2012.6479090","DOIUrl":null,"url":null,"abstract":"Due to the highest electron mobility (2200 cm<sup>2</sup>/Vs) on (111) Ge surface, the n-channel triangular Ge gate-all-around (GAA) FET with (111) sidewalls on Si and L<sub>g</sub>=350 nm shows 2x enhanced I<sub>on</sub> of 110 μA/μm at 1V with respect to the devices with near (110) sidewalls. A novel process to etch away the defective Ge near Ge/Si interface from epitaxial Ge grown on SOI achieves a nearly defect-free channel, good gate control triangular gate, and larger effective width. Electrostatic control of SS= 94 mV/dec (at 1V) can be further improved if superior gate stack than EOT= 5.5 nm and D<sub>it</sub>= 1×10<sup>12</sup> cm<sup>-2</sup>eV<sup>-1</sup> is used. The I<sub>on</sub> can be further enhanced if the line edge roughness (LER) can be reduced. The Ge GAA n-FET is reported for the first time with CMOS compatible process, which makes the circuits integration much easier.","PeriodicalId":6376,"journal":{"name":"2012 International Electron Devices Meeting","volume":"21 1","pages":"23.6.1-23.6.4"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Electron Devices Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2012.6479090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Due to the highest electron mobility (2200 cm2/Vs) on (111) Ge surface, the n-channel triangular Ge gate-all-around (GAA) FET with (111) sidewalls on Si and Lg=350 nm shows 2x enhanced Ion of 110 μA/μm at 1V with respect to the devices with near (110) sidewalls. A novel process to etch away the defective Ge near Ge/Si interface from epitaxial Ge grown on SOI achieves a nearly defect-free channel, good gate control triangular gate, and larger effective width. Electrostatic control of SS= 94 mV/dec (at 1V) can be further improved if superior gate stack than EOT= 5.5 nm and Dit= 1×1012 cm-2eV-1 is used. The Ion can be further enhanced if the line edge roughness (LER) can be reduced. The Ge GAA n-FET is reported for the first time with CMOS compatible process, which makes the circuits integration much easier.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有(111)侧壁增强离子和几乎无缺陷通道的硅基三角形沟道Ge非场效应管
由于(111)Ge表面的电子迁移率最高(2200 cm2/Vs),(111)边壁为Si且Lg=350 nm的n沟道三角形Ge栅极全能(GAA)场效应管在1V时的离子迁移率为110 μA/μm,是近(110)边壁器件的2倍。在SOI上生长的外延锗中,通过蚀刻去除锗/硅界面附近的缺陷锗,获得了几乎无缺陷的沟道、良好的栅极控制三角栅极和更大的有效宽度。如果采用优于EOT= 5.5 nm和Dit= 1×1012 cm-2eV-1的栅极堆,则SS= 94 mV/dec (1V)的静电控制性能可以得到进一步改善。如果可以降低线边缘粗糙度(LER),则离子可以进一步增强。本文首次报道了采用CMOS兼容工艺的Ge GAA n-FET,使电路集成更加容易。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the degradation of field-plate assisted RESURF power devices Effective Schottky Barrier Height modulation using dielectric dipoles for source/drain specific contact resistivity improvement Study of piezoresistive properties of advanced CMOS transistors: Thin film SOI, SiGe/SOI, unstrained and strained Tri-Gate Nanowires Design and performance of pseudo-spin-MOSFETs using nano-CMOS devices MOSFET performance and scalability enhancement by insertion of oxygen layers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1