{"title":"Spin transport in metal and oxide devices at the nanoscale","authors":"S. Parui, K. Rana, T. Banerjee","doi":"10.1109/IEDM.2012.6479024","DOIUrl":null,"url":null,"abstract":"Here we discuss a non-destructive technique that characterizes spin and charge transport at the nanometer scale, across buried layers and interfaces, in magnetic memory elements as used in spin transfer torque based Magnetic Random Access Memory (STT-MRAM). While probing in the current-perpendicular-to-plane direction, this method enables quantification of essential spin transport parameters as length and time scale, spin polarization in buried layers and interfaces, visualization of domain wall evolution across buried interfaces, besides investigating the homogeneity of transport, at the nanoscale, in spintronics devices.","PeriodicalId":6376,"journal":{"name":"2012 International Electron Devices Meeting","volume":"135 1","pages":"11.4.1-11.4.4"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Electron Devices Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2012.6479024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Here we discuss a non-destructive technique that characterizes spin and charge transport at the nanometer scale, across buried layers and interfaces, in magnetic memory elements as used in spin transfer torque based Magnetic Random Access Memory (STT-MRAM). While probing in the current-perpendicular-to-plane direction, this method enables quantification of essential spin transport parameters as length and time scale, spin polarization in buried layers and interfaces, visualization of domain wall evolution across buried interfaces, besides investigating the homogeneity of transport, at the nanoscale, in spintronics devices.