{"title":"Thermal characterization of a wide I/O 3DIC","authors":"Kuo-ying Tsai, Shih-chang Ku, W. Chang, H. Tsai","doi":"10.1109/IMPACT.2011.6117256","DOIUrl":null,"url":null,"abstract":"The thermal performance of a specific 3D IC structure — a wide I/O package is investigated with parameterized factors like TSV diameter, material of micro bumps, and TSV allocation strategy. TSV diameter and material of micro bump are found no significant effect on thermal performance of the illustrated wide I/O package. However, the hot spot location is changed by the TSV allocation. The results suggest the better locations for thermal diodes would be close to the TSV or die corners. Also this work concludes that the “TSV peripheral” allocation performs the better cooling than the others.","PeriodicalId":6360,"journal":{"name":"2011 6th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT)","volume":"26 1","pages":"261-264"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 6th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMPACT.2011.6117256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The thermal performance of a specific 3D IC structure — a wide I/O package is investigated with parameterized factors like TSV diameter, material of micro bumps, and TSV allocation strategy. TSV diameter and material of micro bump are found no significant effect on thermal performance of the illustrated wide I/O package. However, the hot spot location is changed by the TSV allocation. The results suggest the better locations for thermal diodes would be close to the TSV or die corners. Also this work concludes that the “TSV peripheral” allocation performs the better cooling than the others.