Comparative analysis between non-linear wavelet based image denoising techniques

Milan Chikanbanjar
{"title":"Comparative analysis between non-linear wavelet based image denoising techniques","authors":"Milan Chikanbanjar","doi":"10.3126/jsce.v5i0.22373","DOIUrl":null,"url":null,"abstract":"Digital images have been a major form of transmission of visual information, but due to the presence of noise, the image gets corrupted. Thus, processing of the received image needs to be done before being used in an application. Denoising of image involves data manipulation to remove noise in order to produce a good quality image retaining different details. Quantitative measures have been used to show the improvement in the quality of the restored image by the use of various thresholding techniques by the use of parameters mainly, MSE (Mean Square Error), PSNR (Peak-Signal-to-Noise-Ratio) and SSIM (Structural Similarity index). Here, non-linear wavelet transform denoising techniques of natural images are studied, analyzed and compared using thresholding techniques such as soft, hard, semi-soft, LevelShrink, SUREShrink, VisuShrink and BayesShrink. On most of the tests, PSNR and SSIM values for LevelShrink Hard thresholding method is higher as compared to other thresholding methods. For instance, from tests PSNR and SSIM values of lena image for VISUShrink Hard, VISUShrink Soft, VISUShrink Semi Soft, LevelShrink Hard, LevelShrink Soft, LevelShrink Semi Soft, SUREShrink, BayesShrink thresholding methods at the variance of 10 are 23.82, 16.51, 23.25, 24.48, 23.25, 20.67, 23.42, 23.14 and 0.28, 0.28, 0.28, 0.29, 0.22, 0.25, 0.16 respectively which shows that the PSNR and SSIM values for LevelShrink Hard thresholding method is higher as compared to other thresholding methods, and so on. Thus, it can be stated that the performance of LevelShrink Hard thresholding method is better on most of tests.","PeriodicalId":36368,"journal":{"name":"AIUB Journal of Science and Engineering","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIUB Journal of Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3126/jsce.v5i0.22373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Digital images have been a major form of transmission of visual information, but due to the presence of noise, the image gets corrupted. Thus, processing of the received image needs to be done before being used in an application. Denoising of image involves data manipulation to remove noise in order to produce a good quality image retaining different details. Quantitative measures have been used to show the improvement in the quality of the restored image by the use of various thresholding techniques by the use of parameters mainly, MSE (Mean Square Error), PSNR (Peak-Signal-to-Noise-Ratio) and SSIM (Structural Similarity index). Here, non-linear wavelet transform denoising techniques of natural images are studied, analyzed and compared using thresholding techniques such as soft, hard, semi-soft, LevelShrink, SUREShrink, VisuShrink and BayesShrink. On most of the tests, PSNR and SSIM values for LevelShrink Hard thresholding method is higher as compared to other thresholding methods. For instance, from tests PSNR and SSIM values of lena image for VISUShrink Hard, VISUShrink Soft, VISUShrink Semi Soft, LevelShrink Hard, LevelShrink Soft, LevelShrink Semi Soft, SUREShrink, BayesShrink thresholding methods at the variance of 10 are 23.82, 16.51, 23.25, 24.48, 23.25, 20.67, 23.42, 23.14 and 0.28, 0.28, 0.28, 0.29, 0.22, 0.25, 0.16 respectively which shows that the PSNR and SSIM values for LevelShrink Hard thresholding method is higher as compared to other thresholding methods, and so on. Thus, it can be stated that the performance of LevelShrink Hard thresholding method is better on most of tests.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于非线性小波图像去噪技术的对比分析
数字图像一直是视觉信息传输的主要形式,但由于噪声的存在,图像会受到破坏。因此,在应用程序中使用之前需要对接收到的图像进行处理。图像去噪是指对数据进行处理,去除噪声,以获得保留不同细节的高质量图像。通过使用参数MSE(均方误差),PSNR(峰值信噪比)和SSIM(结构相似指数),使用各种阈值技术,定量度量已被用于显示恢复图像质量的改善。本文采用软、硬、半软、LevelShrink、SUREShrink、VisuShrink、BayesShrink等阈值分割技术,对自然图像的非线性小波变换去噪技术进行了研究、分析和比较。在大多数测试中,与其他阈值方法相比,LevelShrink硬阈值方法的PSNR和SSIM值更高。例如,通过对VISUShrink Hard、VISUShrink Soft、VISUShrink Semi Soft、LevelShrink Hard、LevelShrink Soft、LevelShrink Semi Soft、SUREShrink、BayesShrink阈值方法在方差为10时的lena图像PSNR和SSIM值的测试,分别为23.82、16.51、23.25、24.48、23.25、20.67、23.42、23.14和0.28、0.28、0.28、0.29、0.22、0.25、0.16,表明LevelShrink Hard阈值方法的PSNR和SSIM值高于其他阈值方法。等等......因此,可以认为LevelShrink硬阈值法在大多数测试中性能更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
AIUB Journal of Science and Engineering
AIUB Journal of Science and Engineering Mathematics-Mathematics (miscellaneous)
CiteScore
1.00
自引率
0.00%
发文量
3
期刊最新文献
STUDI KARAKTERISTIK ASPAL BUTON DAERAH KABUNGKA KECAMATAN PASARWAJO KABUPATEN BUTON, SULAWESI TENGGARA DITRIBUSI PERGERAKAN PENUMPANG MENGGUNAKAN KAPAL FEERY DENGAN METODE DETROIT DI PROVINSI MALUKU UTARA STUDI INTERPRETASI LAPISAN BAWAH PERMUKAAN TANAH DENGAN METODE GEOLISTRIK DI JALAN LINTAS SUBAIM-BULI KECAMATAN WASILE TIMUR KABUPATEN HALMAHERA TIMUR convoHER2: A Deep Neural Network for Multi-Stage Classification of HER2 Breast Cancer ANALISIS SISTEM PENYARINGAN AIR BERSIH PADA AIR SUMUR WARGA DI KELURAHAN FITU KOTA TERNATE SELATAN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1