Zhiqiang Wei, K. Homma, K. Katayama, K. Kawai, S. Fujii, Y. Naitoh, H. Shima, H. Akinaga, S. Ito, S. Yoneda
{"title":"From Memory to Sensor: ultra-Low Power and High Selectivity Hydrogen Sensor Based on ReRAM Technology","authors":"Zhiqiang Wei, K. Homma, K. Katayama, K. Kawai, S. Fujii, Y. Naitoh, H. Shima, H. Akinaga, S. Ito, S. Yoneda","doi":"10.1109/VLSIT.2018.8510697","DOIUrl":null,"url":null,"abstract":"We have fabricated a novel hydrogen sensor using optimized 0.18-μm ReRAM process. Our ReHsensor (Resistive Hydrogen Sensor) conforms with the ISO26142 standard in that it exhibits exceptional sensing capabilities, including high sensitivity, wide hydrogen concentration range (up to 4 vol.%) in air and N<inf>2</inf> ambient, high gas selectivity (no reaction with CH<inf>4</inf>, CO, CO<inf>2</inf>, CH<inf>3</inf>OH, and CH<inf>3</inf>COCH<inf>3</inf>) and is immune to poisoning by SO<inf>2</inf> and hexamethyl disiloxane (HMDS). As it does not require a heater, the power consumption of the ReHsensor is very low, at 0.35 mW. We used this hydrogen sensor device to develop a battery-powered all-in-one wireless hydrogen sensor unit for IoT applications.","PeriodicalId":6561,"journal":{"name":"2018 IEEE Symposium on VLSI Technology","volume":"9 1","pages":"63-64"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIT.2018.8510697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We have fabricated a novel hydrogen sensor using optimized 0.18-μm ReRAM process. Our ReHsensor (Resistive Hydrogen Sensor) conforms with the ISO26142 standard in that it exhibits exceptional sensing capabilities, including high sensitivity, wide hydrogen concentration range (up to 4 vol.%) in air and N2 ambient, high gas selectivity (no reaction with CH4, CO, CO2, CH3OH, and CH3COCH3) and is immune to poisoning by SO2 and hexamethyl disiloxane (HMDS). As it does not require a heater, the power consumption of the ReHsensor is very low, at 0.35 mW. We used this hydrogen sensor device to develop a battery-powered all-in-one wireless hydrogen sensor unit for IoT applications.